12 resultados para Allele-specific PCR

em DigitalCommons@The Texas Medical Center


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Myotonic dystrophy (DM), an autosomal dominant disorder mapping to human chromosome 19q13.3, is the most common neuromuscular disease in human adults.^ Following the identification of the mutation underlying the DM phenotype, an unstable (CTG)$\sb{n}$ trinucleotide repeat in the 3$\prime$ untranslated region (UTR) of a gene encoding a ser/thr protein kinase named DM protein kinase (DMPK), the study was targeted at two questions: (1) the identification of the disease-causing mechanism(s) of the unstable repeat, and at a more basic level, (2) the identification of the origin and the mechanism(s) involved in repeat instability. The first goal was to identify the pathophysiological mechanisms of the (CTG)$\sb{n}$ repeat.^ The normal repeat is transcribed but not translated; therefore, initial studies centered on the effect on RNA transcript levels. The vast majority of DM affecteds are heterozygous for the mutant expansion, so that the normal allele interferes with the analysis of the mutant allele. A quantitative allele-specific RT-PCR procedure was developed and applied to a spectrum of patient tissue samples and cell lines. Equal levels of unprocessed pre-mRNA were determined for the wild type (+) and disease (DM) alleles in skeletal muscle and cell lines of heterozygous DM patients, indicating that any nucleosome binding has no effect at the level of transcriptional initiation and transcription of the mutant DMPK locus. In contrast, processed mRNA levels from the DM allele were reduced relative to the + allele as the size of the expansion increased. The unstable repeat, therefore, impairs post-transcriptional processing of DM allele transcripts. This phenomenon has profound effects on overall DMPK locus steady-state transcript levels in cells missing a wild type allele and does not appear to be mediated by imprinting, decreased mRNA stability, generation of aberrant splice forms, or absence of polyadenylation of the mutant allele.^ In Caucasian DM subjects, the unstable repeat is in complete linkage disequlibrium with a single haplotype composed of nine alleles within and flanking DMPK over a physical distance of 30 kb. A detailed haplotype analysis of the DM region was conducted on a Nigerian (Yoruba) DM family, the only indigenous sub-Saharan DM case reported to date. Each affected member of this family had an expanded (CTG)$\sb{n}$ repeat in one of their DMPK alleles. However, unlike all other DM populations studied thus far, disassociation of the (CTG)$\sb{n}$ repeat expansion from other alleles of the putative predisposing haplotype was found. Thus, the expanded (CTG)$\sb{n}$ repeat in this family was the result of an independent mutational event. Consequently, the origin of DM is unlikely the result of a single mutational event, and the hypothesis that a single ancestral haplotype predisposes to repeat expansion is not compelling. (Abstract shortened by UMI.) ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hundreds of genes show aberrant DNA hypermethylation in cancer, yet little is known about the causes of this hypermethylation. We identified RIL as a frequent methylation target in cancer. In search for factors that influence RIL hypermethylation, we found a 12-bp polymorphic sequence around its transcription start site that creates a long allele. Pyrosequencing of homozygous tumors revealed a 2.1-fold higher methylation for the short alleles (P<0.001). Bisulfite sequencing of cancers heterozygous for RIL showed that the short alleles are 3.1-fold more methylated than the long (P<0.001). The comparison of expression levels between unmethylated long and short EBV-transformed cell lines showed no difference in expression in vivo. Electrophorectic mobility shift assay showed that the inserted region of the long allele binds Sp1 and Sp3 transcription factors, a binding that is absent in the short allele. Transient transfection of RIL allele-specific transgenes showed no effects of the additional Sp1 site on transcription early on. However, stable transfection of methylation-seeded constructs showed gradually decreasing transcription levels from the short allele with eventual spreading of de novo methylation. In contrast, the long allele showed stable levels of expression over time as measured by luciferase and approximately 2-3-fold lower levels of methylation by bisulfite sequencing (P<0.001), suggesting that the polymorphic Sp1 site protects against time-dependent silencing. Our finding demonstrates that, in some genes, hypermethylation in cancer is dictated by protein-DNA interactions at the promoters and provides a novel mechanism by which genetic polymorphisms can influence an epigenetic state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gene silencing due to promoter methylation is an alternative to mutations and deletions, which inactivate tumor suppressor genes (TSG) in cancer. We identified RIL by Methylated CpG Island Amplification technique as a novel aberrantly methylated gene. RIL is expressed in normal tissues and maps to the 5q31 region, frequently deleted in leukemias. We found methylation of RIL in 55/80 (69%) cancer cell lines, with highest methylation in leukemia and colon. We also observed methylation in 46/80 (58%) primary tumors, whereas normal tissues showed substantially lower degrees of methylation. RIL expression was lost in 13/16 cancer cell lines and was restored by demethylating agent. Screening of 38 cell lines and 13 primary cancers by SSCP revealed no mutations in RIL, suggesting that methylation and LOH are the primary inactivation mechanisms. Stable transfection of RIL into colorectal cancer cells resulted in reduction in cell growth, clonogenicity, and increased apoptosis upon UVC treatment, suggesting that RIL is a good candidate TSG. ^ In searching for a cause of RIL hypermethylation, we identified a 12-bp polymorphic sequence around the transcription start site of the gene that creates a long allele containing 3CTC repeat. Evolutionary studies suggested that the long allele appeared late in evolution due to insertion. Using bisulfite sequencing, in cancers heterozygous for RIL, we found that the short allele is 4.4-fold more methylated than the long allele (P = 0.003). EMSA results suggested binding of factor(s) to the inserted region of the long allele, but not to the short. EMSA mutagenesis and competition studies, as well as supershifts using nuclear extracts or recombinant Sp1 strongly indicated that those DNA binding proteins are Sp1 and Sp3. Transient transfections of RIL allele-specific expression constructs showed less than 2-fold differences in luciferase activity, suggesting no major effects of the additional Sp1 site on transcription. However, stable transfection resulted in 3-fold lower levels of transcription from the short allele 60 days post-transfection, consistent with the concept that the polymorphic Sp1 site protects against time-dependent silencing. Thus, an insertional polymorphism in the RIL promoter creates an additional Sp1/Sp3 site, which appears to protect it from silencing and methylation in cancer. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Survivin (BIRC5) is a member of the Inhibitor of Apoptosis (IAP) gene family and functions as a chromosomal passenger protein as well as a mediator of cell survival. Survivin is widely expressed during embryonic development then becomes transcriptionally silent in most highly differentiated adult tissues. It is also overexpressed in virtually every type of tumor. The survivin promoter contains a canonical CpG island that has been described as epigenetically regulated by DNA methylation. We observed that survivin is overexpressed in high grade, poorly differentiated endometrial tumors, and we hypothesized that DNA hypomethylation could explain this expression pattern. Surprisingly, methylation specific PCR and bisulfite pyrosequencing analysis showed that survivin was hypermethylated in endometrial tumors and that this hypermethylation correlated with increased survivin expression. We proposed that methylation could activate survivin expression by inhibit the binding of a transcriptional repressor. ^ The tumor suppressor protein p53 is a well documented transcriptional repressor of survivin and examination of the survivin promoter showed that the p53 binding site contains 3 CpG sites which often become methylated in endometrial tumors. To determine if methylation regulates survivin expression, we treated HCT116 cells with decitabine, a demethylation agent, and observed that survivin transcript and protein levels were significantly repressed following demethylation in a p53 dependent manner. Subsequent binding studies confirmed that DNA methylation inhibited the binding of p53 protein to its binding site in the survivin promoter. ^ We are the first to report this novel mechanism of epigenetic regulation of survivin. We also conducted microarray analysis which showed that many other cancer relevant genes may also be regulated in this manner. While demethylation agents are traditionally thought to inhibit cancer cell growth by reactivating tumor suppressors, our results indicate that an additional important mechanism is to decrease the expression of oncogenes. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The discovery of expanded simple repeated sequences causing or associated with human disease has lead to a new area of research involved in the elucidation of how the expanded repeat causes disease and how the repeat becomes unstable. ^ To study the genetic basis of the (CTG)n repeat instability in the DMPK gene in myotonic dystrophy (DM1) patients, somatic cell hybrids were constructed between the lymphocytes of DM1 patients and a variety of Chinese hamster ovary (CHO) cell DNA repair gene deficient mutants. By using small pool PCR (SP-PCR), the instability of the (CTG)n can be quantitated for both the frequency and sizes of length change mutations. ^ Additional SP-PCR analysis on 2/11 subclones generated from this original hybrid showed a marked increase in large repeat deletions, ∼50%. A bimodal distribution of repeats was seen around the progenitor allele and at a large deleted product (within the normal range) with no intermediate products present. ^ To determine if the repair capacity of the CHO cell led to a mutator phenotype in the hamster and hybrid clones, SP-PCR was also done on 3 hamster microsatellites in a variety of hamster cell backgrounds. No variant alleles were seen in over 2500 genome equivalents screened. ^ Human-hamster hybrids have long been shown to be chromosomally unstable, yet information about the stability of repeated sequences was not known. To test if repeat instability was associated with either intact or non-intact human chromosomes, more than 300 microsatellite repeats on 13 human chromosomes (intact and non-intact) were analyzed in eight hybrid cells. No variants were seen between the hybrid and patient alleles in the hybrids. ^ To identify whether DM1 patients have a previously undetected level of genome wide instability or if the instability is truly locus specific, SP-PCR was done on 6 human microsatellites within the patient used to make the hybrid cells. No variants were seen in over 1000 genomes screened. ^ These studies show that the somatic cell hybrid approach is a genetically stable system that allows for the determination of factors that could lead to changes in microsatellite instability. It also shows that there is something inherent about the DM1 expanded (CTG)n repeat that it is solely targeted by, as of yet, and unknown mechanism that causes the repeat to be unstable. (Abstract shortened by UMI.)^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the in vivo safety, efficacy, and persistence of autologous Epstein Barr virus (EBV)-specific cytotoxic T lymphocytes (CTLs) for the treatment of solid organ transplant (SOT) recipients at high risk for EBV-associated posttransplantation lymphoproliferative disease (PTLD). EBV-CTLs generated from 35 patients expanded with normal kinetics contained both CD8 and CD4 lymphocytes and produced significant specific killing of autologous EBV-transformed B lymphoblastoid cell lines (LCLs). Twelve SOT recipients at high risk for PTLD, or with active disease, received autologous CTL infusions without toxicity. Real-time polymerase chain reaction (PCR) monitoring of EBV-DNA showed a transient increase in plasma EBV-DNA suggestive of lysis of EBV-infected cells, although there was no consistent decrease in virus load in peripheral-blood mononuclear cells. Interferon-gamma enzyme-linked immunospot (ELISPOT) assay and tetramer analysis showed an increase in the frequency of EBV-responsive T cells, which returned to preinfusion levels after 2 to 6 months. None of the treated patients developed PTLD. One patient with liver PTLD showed a complete response, and one with ocular disease has had a partial response stable for over one year. These data are consistent with an expansion and persistence of adoptively transferred EBV-CTLs that is limited in the presence of continued immunosuppression but that nonetheless produces clinically useful antiviral activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have demonstrated that ribbon synapses in the retina do not contain the t-SNARE (target-soluble N-ethylmaleimide-sensitive factor attachment protein receptor) syntaxin 1A that is found in conventional synapses of the nervous system. In contrast, ribbon synapses of the retina contain the related isoform syntaxin 3. In addition to its localization in ribbon synapses, syntaxin 3 is also found in nonneuronal cells, where it has been implicated in the trafficking of transport vesicles to the apical plasma membrane of polarized cells. The syntaxin 3 gene codes for four different splice forms, syntaxins 3A, 3B, 3C, and 3D. We demonstrate here by using analysis of EST databases, RT-PCR, in situ hybridization, and Northern blot analysis that cells in the mouse retina express only syntaxin 3B. In contrast, nonneuronal tissues, such as kidney, express only syntaxin 3A. The two major syntaxin isoforms (3A and 3B) have an identical N-terminal domain but differ in the C-terminal half of the SNARE domain and the C-terminal transmembrane domain. These two domains are thought to be directly involved in synaptic vesicle fusion. The interaction of syntaxin 1A and syntaxin 3B with other synaptic proteins was examined. We found that both proteins bind Munc18/N-sec1 with similar affinity. In contrast, syntaxin 3B had a much lower binding affinity for the t-SNARE SNAP25 compared with syntaxin 1A. By using an in vitro fusion assay, we could demonstrate that vesicles containing syntaxin 3B and SNAP25 could fuse with vesicles containing synaptobrevin2/VAMP2, demonstrating that syntaxin 3B can function as a t-SNARE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myogenin is a muscle-specific transcription factor essential for skeletal muscle differentiation. A severe reduction in the number of fused myotubes is seen in myogenin-null mice, and the expression of genes characteristic of differentiated skeletal muscle is reduced. Additionally, sternebrae defects are seen in myogenin-null mice, a secondary defect in the sternal cartilage precursors. Very little is known about the quantitative requirement for myogenin in muscle differentiation and thoracic skeletal development in vivo. In this thesis I describe experiments utilizing a mouse line harboring a hypomorphic allele of myogenin, generated by gene targeting techniques in embryonic stem cells. The nature of the hypomorphism was due to lowered levels of myogenin from this allele. In embryos homozygous for the hypomorphic allele, normal sternum formation and extensive muscle differentiation was observed. However, muscle hypoplasia and reduced muscle-specific gene expression were apparent in these embryos, and the mice were not viable after birth. These results suggest skeletal muscle differentiation is highly sensitive to the absolute amounts of myogenin, and reveal distinct threshold requirements for myogenin in skeletal muscle differentiation, sternum formation, and viability in vivo. The hypomorphic allele was utilized as a genetically sensitized background to identify other components of myogenin-mediated processes. Using a candidate gene approach I crossed null mutations in MEF2C and MRF4 into the hypomorphic background and examined whether these mutations affected muscle differentiation and skeleton formation in the myogenin hypomorph. Although MEF2C mutation did not affect any phenotypes seen in the hypomorphic background, MRF4 was observed to be an essential component of myogenin-mediated processes of thoracic skeletal development. Additionally, the hypomorphic allele was very sensitive to genetic effects, suggesting the existence of mappable genetic modifiers of the hypomorphic allele of myogenin. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over 50% of sporadic tumors in humans have a p53 mutation highlighting its importance as a tumor suppressor. Considering additional mutations in other genes involved in p53 pathways, every tumor probably has mutant p53 or impaired p53-mediated functions. In response to a variety of cellular and genotoxic stresses, p53, mainly through its transcriptional activity, induces pathways involved in apoptosis and growth arrest. In these circumstances and under normal situations, p53 must be tightly regulated. Mdm2 is an important regulator of p53. Mdm2 inhibits p53 function by binding and blocking its transactivation domain. In addition, Mdm2 helps target p53 for degradation through its E3 ligase activity. Mdm2 null mice are embryonic lethal due to apoptosis in the blastocysts. However, a p53 null background rescues this lethality demonstrating the importance of the p53-Mdm2 interaction, particularly during development. The lethality of the Mdm2 null mouse prior to implantation limits the ability to investigate the role of Mdm2 in regulating p53 in a temporal and tissue specific manner. Does p53 need to be regulated in all tissues throughout the life of a mouse? Does Mdm2 always have to regulate it? To address these questions, we created a conditional Mdm2 allele. The conditional allele, Mdm2FM, in the presence of Cre recombinase results in the deletion of exons 5 and 6 of Mdm2 (most of the p53 binding domain) and represents a null allele. ^ The Mdm2FM allele was crossed with a heart muscle specific Cre expressing mouse (α-myosin heavy chain promoter driven Cre) to ask whether Mdm2 acts as a negative regulator of p53 in the heart. The heart is the most prominent organ early in embryogenesis and is shaped by cell death and proliferation. p53 does not appear to be active in the heart in response to some types of stress, so it remained to be determined if it has to be regulated in normal heart development. Loss of Mdm2 in the heart results in heart defects as early as E9.5. Loss of Mdm2 results in stabilized p53 and apoptosis. This apoptosis leads to a thinning of the myocardial wall particularly in the ventricles and abnormal ventricular structure. Eventually the abnormal heart fails resulting in lethality by E13.5. The embryonic lethality is rescued in a p53 null background. Thus, Mdm2 is important in regulating p53 in the development of the heart. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. The chief goal of this study was to analyze copy number variation (CNV) in breast cancer tumors from 25 African American women with early stage breast cancer (BC) using molecular inversion probes (MIP) in order to: (1) compare the degree of CNV in tumors compared to normal lymph nodes, and (2) determine whether gains and/or losses of genes in specific chromosomes differ between pathologic subtypes of breast cancer defined by known prognostic markers, (3) determine whether gains/losses in CN are associated with known oncogenes or tumor suppressor genes, and (4) determine whether increased gains/losses in CN for specific chromosomes were associated with differences in breast cancer recurrence. ^ Methods. Twenty to 37 nanograms of DNA extracted from 25 formalin-fixed paraffin embedded (FFPE) tumor samples and matched normal lymph nodes were added to individual tubes. Oligonucleotide probes with recognition sequences at each terminus were hybridized with a genomic target sequence to form a circular structure. Probes are released from genomic DNA obtained from FFPE samples, and those which have been correctly "circularized" in the proper allele/nucleotide reaction combination are amplified using polymerase chain reaction (PCR) primers. Amplicons were fluorescently labeled and the tag sequences released from the genome homology regions by treatment with uracil-N-glycosylase to cleave the probe at the site where uracils are present, and detected using a complementary tag array developed by Affymetrix. ^ Results. Analysis of CN gains and losses from tumors and normal tissues showed marked differences in tumors with numerous chromosomes affected. Similar changes were not observed in normal lymph nodes. When tumors were stratified into four groups based on expression or lack of expression of the estrogen receptor and HER2/neu, distinct patterns of CNV for different chromosomes were observed. Gains or losses in CN for specific chromosomes correlated with amplifications/deletions of particular oncogenes or tumor suppressor genes (i.e. such as found on chromosome 17) known to be associated with aggressive tumor phenotype and poor prognosis. There was a trend for increases in CN observed for chromosome 17 to correlate inversely with time to recurrence of BC (p=0.14 for trend). CNV was also observed for chromosomes 5, 8, 10, 11, and 16, which are known sites for several breast cancer susceptibility alleles. ^ Conclusions. This study is the first to validate the MIP technique, to correlate differences in gene expression with known prognostic tumor markers, and to correlate significant increases/decreases in CN with known tumor markers associated with prognosis. The results of this study may have far reaching public health implications towards identifying new high-risk groups based on genomic differences in CNP, both with respect to prognosis and response to therapy, and to eventually identify new therapeutic targets for prevention and treatment of this disease. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important question in developmental biology is how embryonic cell types are derived from a fertilized egg. To address this question, this thesis investigates the mechanisms by which the aboral ectoderm-specific Spec2a gene is spatially and temporally regulated during sea urchin embryogenesis. The Spec2a gene of the sea urchin Strongylocentratus purpuratus has served as a valuable maker to understand the basis of lineage-specific gene activation and the role of transcription factors in cell fate specification. The hypothesis is that transcription factors responsible for cell type-specific gene activation are key components in the initial cell specification step. The Spec2a gene, which encodes a small cytosolic calcium-binding protein, is expressed exclusively in aboral ectoderm cell lineages. The 1516-bp control region of the Spec2a gene contains a 188-bp enhancer element required for temporal activation and aboral ectoderm/mesenchyme cell expression, while an unidentified element upstream of the enhancer represses expression in mesenchyme cells. Using an enhancer activation assay, combined with site-directed mutagenesis, I showed that three TAATCC/T sites within the enhancer are responsible for enhancer activity. Mutagenizing these sites and a fourth one just upstream abolished all activity from the Spec2a control region. A 77-bp DNA fragment from the Spec2a enhancer containing two of the TAATCC/T sites is sufficient for aboral ectoderm/mesenchyme cell expression. A cDNA encoding SpOtx, an orthodenticle-related protein, was cloned from S. purpuratus and shown to bind with high affinity to the TAATCC/T sequences within the Spec2a control region. SpOtx transcripts were found initially in all cells of the cleaving embryo, but they gradually became restricted to oral ectoderm and endoderm cells, suggesting that SpOtx might play a role in the initial temporal activation of the Spec2a gene and most likely has additional functions in the developing embryo. To reveal the broader biological functions of SpOtx, I injected SpOtx mRNA into living sea urchin eggs to determine what effects overexpressing the SpOtx protein might have on embryo development. SpOtx mRNA-injected embryos displayed dramatic alterations in development. Instead of developing into pluteus larvae with 15 different cell types, uniform epithelia balls were formed. These balls consisted of a thin layer of squamous cells with short cilia highly reminiscent of aboral ectoderm. Immunohistochemical staining and RT-PCR demonstrated that the SpOtx-injected embryoids expressed aboral ectoderm markers uniformly, but showed very weak or no expression of markers for non-aboral ectoderm cell types. These data strongly suggested that overexpression of SpOtx redirected the normal fate of non-aboral ectoderm cells to that of aboral ectoderm. These results show that SpOtx is involved in aboral ectoderm differentiation by activating aboral ectoderm-specific genes and that modulating its expression can lead to changes in cell fate. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microsatellite instability (MSI) is a hallmark of the mutator phenotype associated with Hereditary Non-Polyposis Colon Cancer (HNPCC). The MSI-High (MSI-H) HNPCC population has been well characterized, but the microsatellite low and stable (MSI-L/MSS) HNPCC population is much less understood. We hypothesize there are significant levels of MSI in HNPCC DNA classified as MSI-L/MSS, but no single variant allele makes up a sufficient population in the tumor DNA to be detected by standard analysis. Finding variants would suggest there is a mutator phenotype for the MSI-L/MSS HNPCC population that is distinct from the MSI-H HNPCC populations. This study quantified and compared MSI in HNPCC patients previously shown to be MSI-H, MSI-L/MSS and an MSI-H older, sporadic colorectal cancer patient. Small-pool Polymerase Chain Reactions (SP-PCRs) were conducted where the DNAs from each sample and controls are diluted into multiple pools, each containing approximately single genome equivalents. At least 100 alleles/sample were studied at six microsatellite loci. Mutant fragments were identified, quantified, and compared using Poisson statistics. Most of the variants were small deletions or insertions, with more mutants being deletions, as has been previously described in yeast and transgenic mice. SP-PCR, where most of the pools contained only 3 or less fragments, enabled identification of variants too infrequent to be detected by large pool PCR. Mutant fragments in positive control MSI-H tumor samples ranged from 0.26 to 0.68 in at least 4 of the 6 loci tested and were consistent with their MSI-H status. In the so called MSS tumors and constitutive tissues (normal colon tissue, and PBLs) of all the HNPCC patients, low, but significant levels of MSI were seen in at least two of the loci studied. This phenomenon was not seen in the sporadic MSI constitutive tissues nor the normal controls and suggests haploinsufficiency, gain-of-function, or a dominant/negative basis of the instability in HNPCC patients carrying germline mutations for tumor suppressor genes. A different frequency and spectrum of mutant fragments suggests a different genetic basis (other than a major mutation in MLH1 or MSH2) for disease in MSI-L and MSS HNPCC patients. ^