3 resultados para Aldehydes

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have shown that sulforaphane, a naturally occurring compound that is found in cruciferous vegetables, offers cellular protection in several models of brain injury. When administered following traumatic brain injury (TBI), sulforaphane has been demonstrated to attenuate blood-brain barrier permeability and reduce cerebral edema. These beneficial effects of sulforaphane have been shown to involve induction of a group of cytoprotective, Nrf2-driven genes, whose protein products include free radical scavenging and detoxifying enzymes. However, the influence of sulforaphane on post-injury cognitive deficits has not been examined. In this study, we examined if sulforaphane, when administered following cortical impact injury, can improve the performance of rats tested in hippocampal- and prefrontal cortex-dependent tasks. Our results indicate that sulforaphane treatment improves performance in the Morris water maze task (as indicated by decreased latencies during learning and platform localization during a probe trial) and reduces working memory dysfunction (tested using the delayed match-to-place task). These behavioral improvements were only observed when the treatment was initiated 1h, but not 6h, post-injury. These studies support the use of sulforaphane in the treatment of TBI, and extend the previously observed protective effects to include enhanced cognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the major metabolic pathways of cyclophosphamide are well established, the mechanism of antitumor drug selectivity is highly controversial. However, it is widely accepted that aldophosphamide, one of the primary metabolites, plays a crucial role in drug selectivity. In an attempt to gain a better understanding of the mechanism of selectivity of cyclophosphamide, a series of aldophosphamide analogs have been synthesized.^ The new analogs, unlike aldophosphamide, are relatively stable in neutral solution; however, they are converted rapidly to aldehydo intermediates in the presence of carboxylate esterase. Due to structural differences, these analogs may be classified into three different groups, arbitrarily designated as A, B, C, depending upon the facility with which the intermediate aldehydes form 4-hydroxy cyclic tautomers. The half-life of the aldehydo/4-hydroxy cyclic tautomeric mixture is longer for bis(acetoxy)aldophosphamide acetal I (a representative of group A), shorter for the n-ethyl analog III (B), and shortest for the N,N-dimethyl analog IV (C). The ratio of aldophosphamide: 4-hydroxycyclophosphamide at pseudoequilibrium is 1: 4 for compound I, 1: 2 for compound III and 0: 1 for compound IV. The therapeutic efficacy of these compounds are group A $>$ group B $>$ group C. It is apparent that the equilibrium position between the aldehydo and 4-hydroxy cyclic tautomers, which determines their stability, is a crucial determinant of both the cytotoxicity and antitumor selectivity. These findings, taken in conjunction with the aldehyde dehydrogenase selectivity hypothesis, may provide an explanation for the unique antitumor activity of cyclophosphamide. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various airborne aldehydes and ketones (i.e., airborne carbonyls) present in outdoor, indoor, and personal air pose a risk to human health at present environmental concentrations. To date, there is no adequate, simple-to-use sampler for monitoring carbonyls at parts per billion concentrations in personal air. The Passive Aldehydes and Ketones Sampler (PAKS) originally developed for this purpose has been found to be unreliable in a number of relatively recent field studies. The PAKS method uses dansylhydrazine, DNSH, as the derivatization agent to produce aldehyde derivatives that are analyzed by HPLC with fluorescence detection. The reasons for the poor performance of the PAKS are not known but it is hypothesized that the chemical derivatization conditions and reaction kinetics combined with a relatively low sampling rate may play a role. This study evaluated the effect of absorption and emission wavelengths, pH of the DNSH coating solution, extraction solvent, and time post-extraction for the yield and stability of formaldehyde, acetaldehyde, and acrolein DNSH derivatives. The results suggest that the optimum conditions for the analysis of DNSHydrazones are the following. The excitation and emission wavelengths for HPLC analysis should be at 250nm and 500nm, respectively. The optimal pH of the coating solution appears to be pH 2 because it improves the formation of di-derivatized acrolein DNSHydrazones without affecting the response of the derivatives of the formaldehyde and acetaldehyde derivatives. Acetonitrile is the preferable extraction solvent while the optimal time to analyze the aldehyde derivatives is 72 hours post-extraction. ^