5 resultados para Air fluorescence method
em DigitalCommons@The Texas Medical Center
Resumo:
Various airborne aldehydes and ketones (i.e., airborne carbonyls) present in outdoor, indoor, and personal air pose a risk to human health at present environmental concentrations. To date, there is no adequate, simple-to-use sampler for monitoring carbonyls at parts per billion concentrations in personal air. The Passive Aldehydes and Ketones Sampler (PAKS) originally developed for this purpose has been found to be unreliable in a number of relatively recent field studies. The PAKS method uses dansylhydrazine, DNSH, as the derivatization agent to produce aldehyde derivatives that are analyzed by HPLC with fluorescence detection. The reasons for the poor performance of the PAKS are not known but it is hypothesized that the chemical derivatization conditions and reaction kinetics combined with a relatively low sampling rate may play a role. This study evaluated the effect of absorption and emission wavelengths, pH of the DNSH coating solution, extraction solvent, and time post-extraction for the yield and stability of formaldehyde, acetaldehyde, and acrolein DNSH derivatives. The results suggest that the optimum conditions for the analysis of DNSHydrazones are the following. The excitation and emission wavelengths for HPLC analysis should be at 250nm and 500nm, respectively. The optimal pH of the coating solution appears to be pH 2 because it improves the formation of di-derivatized acrolein DNSHydrazones without affecting the response of the derivatives of the formaldehyde and acetaldehyde derivatives. Acetonitrile is the preferable extraction solvent while the optimal time to analyze the aldehyde derivatives is 72 hours post-extraction. ^
Resumo:
The Houston region is home to arguably the largest petrochemical and refining complex anywhere. The effluent of this complex includes many potentially hazardous compounds. Study of some of these compounds has led to recognition that a number of known and probable carcinogens are at elevated levels in ambient air. Two of these, benzene and 1,3-butadiene, have been found in concentrations which may pose health risk for residents of Houston.^ Recent popular journalism and publications by local research institutions has increased the interest of the public in Houston's air quality. Much of the literature has been critical of local regulatory agencies' oversight of industrial pollution. A number of citizens in the region have begun to volunteer with air quality advocacy groups in the testing of community air. Inexpensive methods exist for monitoring of ozone, particulate matter and airborne toxic ambient concentrations. This study is an evaluation of a technique that has been successfully applied to airborne toxics.^ This technique, solid phase microextraction (SPME), has been used to measure airborne volatile organic hydrocarbons at community-level concentrations. It is has yielded accurate and rapid concentration estimates at a relatively low cost per sample. Examples of its application to measurement of airborne benzene exist in the literature. None have been found for airborne 1,3-butadiene. These compounds were selected for an evaluation of SPME as a community-deployed technique, to replicate previous application to benzene, to expand application to 1,3-butadiene and due to the salience of these compounds in this community. ^ This study demonstrates that SPME is a useful technique for quantification of 1,3-butadiene at concentrations observed in Houston. Laboratory background levels precluded recommendation of the technique for benzene. One type of SPME fiber, 85 μm Carboxen/PDMS, was found to be a sensitive sampling device for 1,3-butadiene under temperature and humidity conditions common in Houston. This study indicates that these variables affect instrument response. This suggests the necessity of calibration within specific conditions of these variables. While deployment of this technique was less expensive than other methods of quantification of 1,3-butadiene, the complexity of calibration may exclude an SPME method from broad deployment by community groups.^
Resumo:
I have developed a novel approach to test for toxic organic substances adsorbed onto ultra fine particulate particles present in the ambient air in Northeast Houston, Texas. These particles are predominantly carbon soot with an aerodynamic diameter (AD) of <2.5 μm. If present in the ambient air, many of the organic substances will be absorbed to the surface of the particles (which act just like a charcoal air filter), and may be adducted into the respiratory system. Once imbedded into the lungs these particles may release the adsorbed toxic organic substances with serious health consequences. I used a Airmetrics portable Minivol air sampler time drawing the ambient air through collection filters samples from 6 separate sites in Northeast Houston, an area known for high ambient PM 2.5 released from chemical plants and other sources (e.g. vehicle emissions).(1) In practice, the mass of the collected particles were much less than the mass of the filters. My technique was designed to release the adsorbed organic substances on the fine carbon particles by heating the filter samples that included the PM 2.5 particles prior to identification by gas chromatography/mass spectrometry (GCMS). The results showed negligible amounts of target chemicals from the collection filters. However, the filters alone released organic substances and GCMS could not distinguish between the organic substances released from the soot particles from those released from the heated filter fabric. However, an efficacy tests of my method using two wax burning candles that released soot revealed high levels of benzene. This suggests that my method has the potential to reveal the organic substances adsorbed onto the PM 2.5 for analysis. In order to achieve this goal, I must refine the particle collection process which would be independent of the filters; the filters upon heating also release organic substances obscuring the contribution from the soot particles. To obtain pure soot particles I will have to filter more air so that the soot particles can be shaken off the filters and then analyzed by my new technique. ^
Resumo:
An investigation was undertaken to determine the chemical characterization of inhalable particulate matter in the Houston area, with special emphasis on source identification and apportionment of outdoor and indoor atmospheric aerosols using multivariate statistical analyses.^ Fine (<2.5 (mu)m) particle aerosol samples were collected by means of dichotomous samplers at two fixed site (Clear Lake and Sunnyside) ambient monitoring stations and one mobile monitoring van in the Houston area during June-October 1981 as part of the Houston Asthma Study. The mobile van allowed particulate sampling to take place both inside and outside of twelve homes.^ The samples collected for 12-h sampling on a 7 AM-7 PM and 7 PM-7 AM (CDT) schedule were analyzed for mass, trace elements, and two anions. Mass was determined gravimetrically. An energy-dispersive X-ray fluorescence (XRF) spectrometer was used for determination of elemental composition. Ion chromatography (IC) was used to determine sulfate and nitrate.^ Average chemical compositions of fine aerosol at each site were presented. Sulfate was found to be the largest single component in the fine fraction mass, comprising approximately 30% of the fine mass outdoors and 12% indoors, respectively.^ Principal components analysis (PCA) was applied to identify sources of aerosols and to assess the role of meteorological factors on the variation in particulate samples. The results suggested that meteorological parameters were not associated with sources of aerosol samples collected at these Houston sites.^ Source factor contributions to fine mass were calculated using a combination of PCA and stepwise multivariate regression analysis. It was found that much of the total fine mass was apparently contributed by sulfate-related aerosols. The average contributions to the fine mass coming from the sulfate-related aerosols were 56% of the Houston outdoor ambient fine particulate matter and 26% of the indoor fine particulate matter.^ Characterization of indoor aerosol in residential environments was compared with the results for outdoor aerosols. It was suggested that much of the indoor aerosol may be due to outdoor sources, but there may be important contributions from common indoor sources in the home environment such as smoking and gas cooking. ^
Resumo:
Objective: To assess the indoor environment of two different types of dental practices regarding VOCs, PM2.5, and ultrafine particulate concentrations and examine the relationship between specific dental activities and contaminant levels. Method: The indoor environments of two selected dental settings (private practice and community health center) will were assessed in regards to VOCs, PM 2.5, and ultrafine particulate concentrations, as well as other indoor air quality parameters (CO2, CO, temperature, and relative humidity). The sampling duration was four working days for each dental practice. Continuous monitoring and integrated sampling methods were used and number of occupants, frequency, type, and duration of dental procedures or activities recorded. Measurements were compared to indoor air quality standards and guidelines. Results: The private practice had higher CO2, CO, and most VOC concentrations than the community health center, but the community health center had higher PM2.5 and ultrafine PM concentrations. Concentrations of p-dichlorobenzene and PM2.5 exceeded some guidelines. Outdoor concentrations greatly influenced the indoor concentration. There were no significant differences in contaminant levels between the operatory and general area. Indoor concentrations during the working period were not always consistently higher than during the nonworking period. Peaks in particulate matter concentration occurred during root canal and composite procedures.^