3 resultados para Active regions
em DigitalCommons@The Texas Medical Center
Resumo:
Cytochromes P450 are a superfamily of heme-thiolate proteins that function in a concert with another protein, cytochrome P450 reductase, as terminal oxidases of an enzymatic system catalyzing the metabolism of a variety of foreign compounds and endogenous substrates. In order to better understand P450s catalytic mechanism and substrate specificity, information about the structure of the active site is necessary. Given the lack of a crystal structure of mammalian P450, other methods have been used to elucidate the substrate recognition and binding site structure in the active center. In this project I utilized the photoaffinity labeling technique and site-directed mutagenesis approach to gain further structural insight into the active site of mammalian cytochrome P4501AI and examine the role of surface residues in the interaction of P4501A1 with the reductase. ^ Four crosslinked peptides were identified by photoaffinity labeling using diazido benzphetamine as a substrate analog. Alignment of the primary structure of cytochrome P4501A1 with that of bacterial cytochrome P450102 (the crystal structure of which is known) revealed that two of the isolated crosslinked peptides can be placed in the vicinity of heme (in the L helix region and β10-β11 sheet region of cytochrome P450102) and could be involved in substrate binding. The other two peptides were located on the surface of the protein with the label bound specifically to Lys residues that were proposed to be involved in reductase-P450 interaction. ^ Alternatively, it has been shown that some of the organic hydroperoxides can support P450 catalyzed reactions in the absence of NADPH, O2 and reductase. By means of photoaffinity labeling the cumene hydroperoxide binding region was identified. Using azidocumene as the photoaffinity label, the tripeptide T501-L502-K503 was shown to be the site where azidocumene covalently binds to P4501A1. The sequence alignment of cytochrome P4501A1 with cytochrome P450102 predicts that this region might correspond to β-sheet structure localized on the distal side of the heme ring near the I helix and the oxygen binding pocket. The role of Thr501 in the cumene hydroperoxide binding was confirmed by mutations of this residue and kinetic analysis of the effects of the mutations. ^ In addition, the role of two lysine residues, Lys271 and Lys279, in the interaction with reductase was examined by means of site-directed mutagenesis. The lysine residues were substituted with isoleucine and enzymatic activity of the wild type and the mutants were compared in reductase- and cumene hydroperoxide-supported systems. The lysine 279 residue has been shown to play a critical role in the P4501A1-reductase interaction. ^
Resumo:
Repressor element 1 (RE1)-silencing transcription factor (REST)/neuron-restrictive silencer factor (NRSF) can repress several terminal neuronal differentiation genes by binding to a specific DNA sequence (RE1/neuron-restrictive silencer element [NRSE]) present in their regulatory regions. REST-VP16 binds to the same RE1/NRSE, but activates these REST/NRSF target genes. However, it is unclear whether REST-VP16 expression is sufficient to cause formation of functional neurons either from neural stem cells or from heterologous stem cells. Here we show that the expression of REST-VP16 in myoblasts grown under muscle differentiation conditions blocked entry into the muscle differentiation pathway, countered endogenous REST/NRSF-dependent repression, activated the REST/NRSF target genes, and, surprisingly, activated other neuronal differentiation genes and converted the myoblasts to a physiologically active neuronal phenotype. Furthermore, in vitro differentiated neurons produced by REST-VP16-expressing myoblasts, when injected into mouse brain, survived, incorporated into the normal brain, and did not form tumors. This is the first instance in which myoblasts were converted to a neuronal phenotype. Our results suggest that direct activation of REST/NRSF target genes with a single transgene, REST-VP16, is sufficient to activate other terminal neuronal differentiation genes and to override the muscle differentiation pathways, and they suggest that this approach provides an efficient way of triggering neuronal differentiation in myoblasts and possibly other stem cells.
Resumo:
The built environment is recognized as having an impact on health and physical activity. Ecological theories of physical activity suggest that enhancing access to places to be physically active may increase activity levels. Studies show that users of fitness facilities are more likely to be active than inactive and active people are more likely to report access to fitness facilities. The purpose of this study was to examine the ecologic relationship between density of fitness facilities and self-reported levels of physical activity in adults in selected Metropolitan Statistical Areas (MSAs) in the United States.^ The 2007 MSA Business Patterns and the 2007 Behavioral Risk Factor Surveillance System (BRFSS) were used to gather fitness facility and physical activity data for 141 MSAs in the United States. Pearson correlations were performed between fitness facility density (number of facilities/100,000 people) and six summary measures of physical activity prevalence. Regional analysis was done using the nine U.S. Standard Regions for Temperature and Precipitation. ^ Direct correlations between fitness facility density and the percent of those physically active (r=0.27, 95% CI 0.11, 0.42, p=0.0012), those meeting moderate-intensity activity guidelines, (r=0.23, 95% CI 0.07, 0.38, p=0.006), and those meeting vigorous-intensity activity guidelines (r=0.30, 95% CI 0.14, 0.44, p=0.003) were found. An inverse correlation was found between fitness facility density and the percent of people physically inactive (r=-0.45, 95% CI -0.57, -0.31), p<0.0001). Regional analysis showed the same trends across most regions.^ Access to fitness facilities, defined here as fitness facility density, is related to physical activity levels. Results suggest the potential importance of the influence of the built environment on physical activity behaviors. Public health officials and city planners should consider the possible positive effect that increasing the number of fitness facilities in communities would have on activity levels.^