6 resultados para Activation non génomique des MAPK

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

4HPR is a synthetic retinoid that has shown chemopreventive and therapeutic efficacy against premalignant and malignant lesions including oral leukoplakia, ovarian and breast cancer and neuroblastoma in clinical trials. 4HPR induces growth inhibition and apoptosis in various cancer cells including head and neck squamous cell carcinoma (HNSCC) cells. 4HPR induces apoptosis by several mechanisms including increasing reactive oxygen species (ROS), or inducing mitochondrial permeability transition (MPT). 4HPR has also been shown to modulate the level of different proteins by transcriptional activation or posttranslational modification in various cellular contexts. However, the mechanism of its action is not fully elucidated. In this study, we explored the mechanism of 4HPR-induced apoptosis in HNSCC cells. ^ First, we identified proteins modulated by 4HPR by using proteomics approaches including: Powerblot western array and 2-dimensional polyacrylamide gel electrophoresis. We found that 4HPR modulated the levels of several proteins including c-Jun. Further analysis has shown that 4HPR induced activation of Activator Protein 1 (AP-1) components, c-Jun and ATF-2. We also found that 4HPR increased the level of Heat shock protein (Hsp) 70 and phosphorylation of Hsp27. ^ Second, we found that 4HPR induced prolonged activation of JNK, p38/MAPK and extracellular signal-regulated kinase (ERK). We also demonstrated that the activation of these kinases is required for 4HPR-induced apoptosis. JNK inhibitor SP600125 and siRNA against JNK1 and JNK2 suppressed, while overexpression of JNK1 enhanced 4HPR-induced apoptosis. p38/MAPK inhibitor PD169316 and MEK1/2 inhibitor PD98059 also suppressed 4HPR-induced apoptosis. We also demonstrated that activation of JNK, p38/MAPK and ERK is triggered by ROS generation induced by 4HPR. We also found that translation inhibitor, cycloheximide, suppressed 4HPR-induced apoptosis through inhibition of 4HPR-induced events (e.g. ROS generation, cytochrome c release, JNK activation and suppression of Akt). We also demonstrated that MPT is involved in 4HPR-induced apoptosis. ^ Third, we demonstrated the presence of NADPH oxidase in HNSCC 2B cells. We also found that 4HPR increased the level of the p67phox, a subunit of NADPH oxidase which participates in ROS production and apoptosis induced by 4HPR. ^ The novel insight into the mechanism by which 4HPR induces apoptosis can be used to improve design of future clinical studies with this synthetic retinoid in combination with specific MAPK modulators. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent data suggest that the generation of new lymphatic vessels (i.e. lymphangiogenesis) may be a rate-limiting step in the dissemination of tumor cells to regional lymph nodes. However, efforts to study the cellular and molecular interactions that take place between tumor cells and lymphatic endothelial cells have been limited due to a lack of lymphatic endothelial cell lines available for study. ^ I have used a microsurgical approach to establish conditionally immortalized lymphatic endothelial cell lines from the afferent mesenteric lymphatic vessels of mice. Characterization of lymphatic endothelial cells, and tumor-associated lymphatic vessels revealed high expression levels of VCAM-1, which is known to facilitate adhesion of some tumor cells to vascular endothelial cells. Further investigation revealed that murine melanoma cells selected for high expression of α4, a counter-receptor for VCAM-1, demonstrated enhanced adhesion to lymphatic endothelial cells in vitro, and increased tumorigenicity and lymphatic metastasis in vivo, despite similar lymphatic vessel numbers. ^ Next, I examined the effects of growth factors that regulate lymphangiogenesis, and report that several growth factors are capable of activating survival and proliferation pathways of lymphatic endothelial cells. The dual protein tyrosine kinase inhibitor AEE788 (EGFR and VEGFR-2) inhibited the activation of Akt and MAPK in lymphatic endothelial cells responding to multiple growth factors. Moreover, oral treatment of mice with AEE788 decreased lymphatic vessel density and production of lymphatic metastasis by human colon cancer cells growing in the cecum of nude mice. ^ In the last set of experiments, I investigated the surgical management of lymphatic metastasis using a novel model of sentinel lymphadenectomy in live mice bearing subcutaneous B16-BL6 melanoma. The data demonstrate that this procedure when combined with wide excision of the primary melanoma, significantly enhanced survival of syngeneic C57BL/6 mice. ^ Collectively, these results indicate that the production of lymphatic metastasis depends on lymphangiogenesis, tumor cell adhesion to lymphatic endothelial cells, and proliferation of tumor cells in lymph nodes. Thus, lymphatic metastasis is a multi-step, complex, and active process that depends upon multiple interactions between tumor cells and tumor associated lymphatic endothelial cells. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is the most common demyelinating disease affecting the central nervous system. There is no cure for MS and current therapies have limited efficacy. While the majority of individuals with MS develop significant clinical disability, a subset experiences a disease course with minimal impairment even in the presence of significant apparent tissue damage on magnetic resonance imaging (MRI). The current studies combined functional MRI and diffusion tensor imaging (DTI) to elucidate brain mechanisms associated with lack of clinical disability in patients with MS. Recent evidence has implicated cortical reorganization as a mechanism to limit the clinical manifestation of the disease. Functional MRI was used to test the hypothesis that non-disabled MS patients (Expanded Disability Status Scale ≤ 1.5) show increased recruitment of cognitive control regions (dorsolateral prefrontal and anterior cingulate cortex) while performing sensory, motor and cognitive tasks. Compared to matched healthy controls, patients increased activation of cognitive control brain regions when performing non-dominant hand movements and the 2-back working memory task. Using dynamic causal modeling, we tested whether increased cognitive control recruitment is associated with alterations in connectivity in the working memory functional network. Patients exhibited similar network connectivity to that of control subjects when performing working memory tasks. We subsequently investigated the integrity of major white matter tracts to assess structural connectivity and its relation to activation and functional integration of the cognitive control system. Patients showed substantial alterations in callosal, inferior and posterior white matter tracts and less pronounced involvement of the corticospinal tracts and superior longitudinal fasciculi (SLF). Decreased structural integrity within the right SLF in patients was associated with decreased performance, and decreased activation and connectivity of the cognitive control system when performing working memory tasks. These studies suggest that patient with MS without clinical disability increase cognitive control system recruitment across functional domains and rely on preserved functional and structural connectivity of brain regions associated with this network. Moreover, the current studies show the usefulness of combining brain activation data from functional MRI and structural connectivity data from DTI to improve our understanding of brain adaptation mechanisms to neurological disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although many clinical trials investigated the use of IL-2, IL-12, and LAK in adoptive immunotherapy to treat cancer, only limited clinical success has been achieved. Better understanding of the intracellular processes that IL-2 and IL-12 utilize to generate LAK and other functions in NK cells is necessary to improve this mode of therapy. IL-2 and IL-12 stimulate extracellular signal-regulated protein kinase (ERK) and p38 MAPK in mitogen-activated T lymphocytes. The functional roles that these kinases play are still unclear. In this study, we examined whether MAPK Kinase (MKK)/ERK and/or p38 MAPK pathways are necessary for IL-2 or IL-12 to activate NK cells. We established that IL-2 activates MKK1/2/ERK pathway in freshly isolated human NK cells without any prior stimulation. Furthermore, we determined that an intact MKK/ERK pathway is necessary for IL-2 to activate NK cells to express at least four known biological responses: LAK activity, IFN-γ secretion, and CD25 and CD69 expression. Treatment of NK cells with a specific inhibitor of MKK1/2 PD98059, during the IL-2 stimulation blocked in a dose-dependent manner each of four activation parameters. Although activation of ERK was not detected in NK cells immediately after IL-12 stimulation, IL-12-induced functional activation was inhibited by the MKK1/2 inhibitor, as well. In contrast to what was observed by others in T lymphocytes, activation of p38 MAPK by IL-2 was not detected in NK cells. Additionally, a specific inhibitor of p38 MAPK (SB203850) did not inhibit IL-2-activated NK functions. These data reveal selective signaling differences between NK cells and T lymphocytes. Collectively, the data support that the MKK/ERK pathway plays a critical positive regulatory role in NK cells during activation by IL-2 and IL-12. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The FUS1 tumor suppressor gene (TSG) has been found to be deficient in many human non-small cell lung cancer (NSCLC) tissue samples and cell lines (1,2,3). Studies have shown potent anti-tumor activity of FUS1 in animal models where FUS1 was delivered through a liposomal vector (4) and the use of FUS1 as a therapeutic agent is currently being studied in clinical human trials (5). Currently, the mechanisms of FUS1 activity are being investigated and my studies have shown that c-Abl tyrosine kinase is inhibited by the FUS1 TSG.^ Considering that many NSCLC cell lines are FUS1 deficient, my studies further identified that FUS1 deficient NSCLC cells have an activated c-Abl tyrosine kinase. C-Abl is a known proto-oncogene and while c-Abl kinase is tightly regulated in normal cells, constitutively active Abl kinase is known to contribute to the oncogenic phenotype in some types of hematopoietic cancers. My studies show that the active c-Abl kinase contributes to the oncogenicity of NSCLC cells, particularly in tumors that are deficient in FUS1, and that c-Abl may prove to be a viable target in NSCLC therapy.^ Current studies have shown that growth factor receptors play a role in NSCLC. Over-expression of the epidermal growth factor receptor (EGFR) plays a significant role in aggressiveness of NSCLC. Current late stage treatments include EFGR tyrosine kinase inhibitors or EGFR antibodies. Platelet-derived growth factor receptor (PDGFR) also has been shown to play a role in NSCLC. Of note, both growth factor receptors are known upstream activators of c-Abl kinase. My studies indicate that growth factor receptor simulation along deficiency in FUS1 expression contributes to the activation of c-Abl kinase in NSCLC cells. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lung cancer is the leading cause of cancer death in both men and women in the United States and worldwide. Despite improvement in treatment strategies, the 5-year survival rate of lung cancer patients remains low. Thus, effective chemoprevention and treatment approaches are sorely needed. Mutations and activation of KRAS occur frequently in tobacco users and the early stage of development of non-small cell lung cancers (NSCLC). So they are thought to be the primary driver for lung carcinogenesis. My work showed that KRAS mutations and activations modulated the expression of TNF-related apoptosis-inducing ligand (TRAIL) receptors by up-regulating death receptors and down-regulating decoy receptors. In addition, we showed that KRAS suppresses cellular FADD-like IL-1β-converting enzyme (FLICE)-like inhibitory protein (c-FLIP) expression through activation of ERK/MAPK-mediated activation of c-MYC which means the mutant KRAS cells could be specifically targeted via TRAIL induced apoptosis. The expression level of Inhibitors of Apoptosis Proteins (IAPs) in mutant KRAS cells is usually high which could be overcome by the second mitochondria-derived activator of caspases (Smac) mimetic. So the combination of TRAIL and Smac mimetic induced the synthetic lethal reaction specifically in the mutant-KRAS cells but not in normal lung cells and wild-type KRAS lung cancer cells. Therefore, a synthetic lethal interaction among TRAIL, Smac mimetic and KRAS mutations could be used as an approach for chemoprevention and treatment of NSCLC with KRAS mutations. Further data in animal experiments showed that short-term, intermittent treatment with TRAIL and Smac mimetic induced apoptosis in mutant KRAS cells and reduced tumor burden in a KRAS-induced pre-malignancy model and mutant KRAS NSCLC xenograft models. These results show the great potential benefit of a selective therapeutic approach for the chemoprevention and treatment of NSCLC with KRAS mutations.