2 resultados para Acquisition of property (Roman law)

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linezolid, which targets the ribosome, is a new synthetic antibiotic that is used for treatment of infections caused by Gram-positive pathogens. Clinical resistance to linezolid, so far, has been developing only slowly and has involved exclusively target site mutations. We have discovered that linezolid resistance in a methicillin-resistant Staphylococcus aureus hospital strain from Colombia is determined by the presence of the cfr gene whose product, Cfr methyltransferase, modifies adenosine at position 2503 in 23S rRNA in the large ribosomal subunit. The molecular model of the linezolid-ribosome complex reveals localization of A2503 within the drug binding site. The natural function of cfr likely involves protection against natural antibiotics whose site of action overlaps that of linezolid. In the chromosome of the clinical strain, cfr is linked to ermB, a gene responsible for dimethylation of A2058 in 23S rRNA. Coexpression of these two genes confers resistance to all the clinically relevant antibiotics that target the large ribosomal subunit. The association of the ermB/cfr operon with transposon and plasmid genetic elements indicates its possible mobile nature. This is the first example of clinical resistance to the synthetic drug linezolid which involves a natural resistance gene with the capability of disseminating among Gram-positive pathogenic strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cumulative work presented here supports the hypothesis that plasticity in the cerebellar cortex and cerebellar nuclei mediates a simple associative form of motor teaming-Pavlovian eyelid conditioning. It was previously demonstrated that focal ablative lesions of cerebellar anterior lobe or pharmacological block of the cerebellar cortex output disrupted the timing of the conditioned eyeblink response, unmasking a response with a relatively fixed and very short latency to onset. The results of this thesis demonstrate that the short-latency responses are due to associative learning. Unpaired training does not support the acquisition of short-latency responses while the rate of acquisition of short-latency responses during paired training is approximately the same as that of timed conditioned responses. The acquisition of short-latency responses is dependent on an intact cerebellar cortex. Both ablative lesions of the cerebellar cortex and inactivation of cerebellar cortex output with picrotoxin block the acquisition of short-latency responses. However, once the short-latency responses are acquired neither disconnection of cerebellar cortex nor inactivation of the cerebellar nucleus block reacquisition. The results are consistent with the proposal that plasticity in the cerebellar cortex is necessary for learning the timing of conditioned responses, plasticity in the interpositus nucleus mediates the short latency responses, and cerebellar cortical output and mossy fiber input are necessary for the acquisition of short latency responses. ^