4 resultados para Acetyltransferases
em DigitalCommons@The Texas Medical Center
Resumo:
Histone acetyltransferases are important chromatin modifiers that function as transcriptional co-activators. The identification of the transcriptional regulator GCN5 as the first nuclear histone acetyltransferase in yeast directly linked chromatin remodeling to transcriptional regulation. Although emerging evidence suggests that acetyltransferases participate in multiple cellular processes, their roles in mammalian development remain undefined. In this study, I have cloned and characterized the mouse homolog of GCN5 and a closely related protein P/CAF that interacts with p300/CBP. In contrast to yeast GCN5, but similar to P/CAF, mouse GCN5 possesses an additional N-terminal domain that confers the ability to acetylate nucleosomal histones. GCN5 and P/CAF exhibit identical substrate specificity and both interact with p300/CBP. Interestingly, expression levels of GCN5 and P/CAF display a complementary pattern in mouse embryos and in adult tissues, suggesting that they have distinct tissue or developmental stage specific roles. To define the in vivo function of GCN5 and P/CAF, I have generated mice that are nullizygous for GCN5 or P/CAF. P/CAF null mice are viable and fertile with no gross morphological defects, indicating that P/CAF is dispensable for development and p300/CBP function in vivo. In contrast, mice lacking GCN5 die between 10.5–11 days of gestation. GCN5 null mice are severely retarded but have anterior ectopic outgrowth. Molecular marker analyses reveal that early mesoderm is formed in GCN5 null mice but further differentiation into distinct mesodermal lineages is perturbed. While presomitic mesoderm and chodamesoderm are missing in GCN5 mutant mice, extraembryonic tissues and lateral mesoderm are unaffected. This is consistent with our finding that GCN5 expression is absent in the heart and extraembryonic tissues but is uniform throughout the rest of the embryo. Remarkably, GCN5 mutant mice exhibit an unusually high incidence of apoptosis in the embryonic ectoderm and mesoderm. Finally, mice doubly null for GCN5 and P/CAF die much earlier than mice harboring the GCN5 mutation alone, suggesting that P/CAF and GCN5 share some overlapping function during embryogenesis. This work is the first study to show that specific acetyltransferase is important for cell survival as well as mesoderm differentiation or maintenance during early mammalian development. ^
Resumo:
The corepressor complex Tup1-Ssn6 regulates many classes of genes in yeast including cell type specific, glucose repressible, and DNA damage inducible. Tup1 and Ssn6 are recruited to target promoters through their interactions with specific DNA binding proteins such as α2, Mig1, and Crt1. Most promoters that are repressed by this corepressor complex exhibit a high degree of nucleosomal organization. This chromatin domain occludes transcription factor access to the promoter element resulting in gene repression. Previous work indicated that Tup1 interacts with underacetylated isoforms of H3 and H4, and that mutation of these histones synergistically compromises repression. These studies predict that Tup1-hypoacetyalted histone interaction is important to the repression mechanism, and in vivo hyperacetylation might compromise the corepressors ability to repress target genes. ^ One way to alter histone acetylation levels in vivo is to alter the balance between histone acetyltransferases and histone deacetylases. To date five histone deacetylases (HDACs) have been identified in yeast Rpd3, Hos1, Hos2, Hos3 and Hda1. Deletion of single or double HDAC genes had little to no effect on Tup1-Ssn6 repression, but simultaneous deletion of three specific activities Rpd3, Hos1, and Hos2 abolished repression in vivo. Promoter regions of Tup1-Ssn6 target genes in these triple deacetylase mutant cells are dramatically hyperacetylated in both H3 and H4. Examination of bulk histone acetylation levels showed that this specific HDAC triple mutant combination (rpd3 hos1 hos2) caused a dramatic and concomitant hyperacetylation of both H3 and H4. The loss of repression in the rpd3 hos1 hos2 cells, but not in other mutants, is consistent with previous observations, which indicate that histones provide redundant functions in the repression mechanism and that high levels of acetylation are required to prevent Tup1 binding. Investigation into a potential direct interaction between the Tup1-Ssn6 corepressor complex and one or more HDAC activities showed that both Rpd3 and Hos2 interact with the corepressor complex in vivo. These findings indicate that Tup1-Ssn6 repression involves the recruitment of histone deacetylase activities to target promoters, where they locally deacetylate histone residues promoting Tup1-histone tail interaction to initiate and/or maintain the repressed state. ^
Resumo:
Histone acetylation plays an essential role in many DNA-related processes such as transcriptional regulation via modulation of chromatin structure. Many histone acetytransferases have been discovered and studied in the past few years, but the roles of different histone acetyltransferases (HAT) during mammalian development are not well defined at present. Gcn5 histone acetyltransferase is highly expressed until E16.5 during development. Previous studies in our lab using a constitutive null allele demonstrated that Gcn5 knock out mice are embryonic lethal, precluding the study of Gcn5 functions at later developmental stages. The creation of a conditional Gcn5 null allele, Gcn5flox allele, bypasses the early lethality. Mice homozygous for this allele are viable and appear healthy. In contrast, mice homozygous for a Gcn5 Δex3-18 allele created by Cre-loxP mediated deletion display a phenotype identical to our original Gcn5 null mice. Strikingly, a Gcn5flox(neo) allele, which contain a neomycin cassette in the second intron of Gcn5 is only partially functional and gives rise to a hypomorphic phenotype. Initiation of cranial neural tube closure at forebrain/midbrain boundary fails, resulting in an exencephaly in some Gcn5flox(neo)/flox(neo) embryos. These defects were found at an even greater penetrance in Gcn5flox(neo)/Δ embryos and become completely penetrant in the 129Sv genetic background, suggesting that Gcn5 controls mouse neural tube closure in a dose dependent manner. Furthermore, both Gcn5flox(neo)/flox(neo) and Gcn5 flox(neo)/Δ embryos exhibit anterior homeotic transformations in lower thoracic and lumbar vertebrae. These defects are accompanied by decreased expression levels and a shift in anterior expression boundary of Hoxc8 and Hoxc9. This study provides the first evidence that Gcn5 regulates Hox gene expression and is required for normal axial skeletal patterning in mice. ^
Resumo:
Histone acetylation is a central event in transcriptional activation. The importance of this modification in mammalian development is highlighted by knockout studies that revealed loss of the histone acetyltransferases GCN5, p300, or CBP results in embryonic lethality. Furthermore, early embryogenesis is sensitive to the dosage of p300 and CBP since double p300 +/−CBP+/− heterozygotes die in utero, although either single heterozygote survives. PCAF and GCN5 physically interact with p300 and CBP in vitro. To determine whether these two groups of HATs interact functionally in vivo, we created mice lacking one or more allele of p300, GCN5 or PCAF. As expected, we found that mice heterozygous for any one of these null alleles are viable. The majority of GCN5 p300 double heterozygotes also survive to adulthood with no apparent abnormalities. However, a portion of these mice die prior to birth. These embryos are developmentally stunted and exhibit increased apoptosis compared to wild type or single GCN5 or p300 heterozygous littermates at E8.5. Tissue specification is unaffected in these embryos but organ formation is compromised. In contrast, no abnormalities were observed in mice harboring mutations in both PCAF and p300 , emphasizing the specificity of HAT functions in mammalian development. ^ Since GCN5 null embryos die early in embryogenesis because of a marked increase in apoptosis, studies of its function and mechanism in late development and in tissue specific differentiation are precluded. Here, we also report the establishment of a GCN5 null embryonic stem cell line and a conditional floxGCN5 mouse line, which will serve as powerful genetic tools to examine in depth the function of GCN5 in mammalian development and in adult tissues. ^