8 resultados para Accessory foramina

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction As students become more connected with the internet and other current technologies, the school of nursing has continued to investigate more innovative, meaningful, and effective uses of technology. One particular technology whose use has increased is the portable music/video player. Like the cell phone, mp3 players and iPods have become a standard accessory for students. To capitalize on this popular technology the School has started several pilot projects involving podcasting under graduate and graduate nursing classes and has also been involved in one research project using video iPods. [See PDF for complete abstract]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upon sensing of peptide pheromone, Enterococcus faecalis efficiently transfers plasmid pCF10 through a type IV secretion (T4S) system to recipient cells. The PcfF accessory factor and PcfG relaxase initiate transfer by catalyzing strand-specific nicking at the pCF10 origin of transfer sequence (oriT). Here, we present evidence that PcfF and PcfG spatially coordinate docking of the pCF10 transfer intermediate with PcfC, a membrane-bound putative ATPase related to the coupling proteins of gram-negative T4S machines. PcfC and PcfG fractionated with the membrane and PcfF with the cytoplasm, yet all three proteins formed several punctate foci at the peripheries of pheromone-induced cells as monitored by immunofluorescence microscopy. A PcfC Walker A nucleoside triphosphate (NTP) binding site mutant (K156T) fractionated with the E. faecalis membrane and also formed foci, whereas PcfC deleted of its N-terminal putative transmembrane domain (PcfCDelta N103) distributed uniformly throughout the cytoplasm. Native PcfC and mutant proteins PcfCK156T and PcfCDelta N103 bound pCF10 but not pcfG or Delta oriT mutant plasmids as shown by transfer DNA immunoprecipitation, indicating that PcfC binds only the processed form of pCF10 in vivo. Finally, purified PcfCDelta N103 bound DNA substrates and interacted with purified PcfF and PcfG in vitro. Our findings support a model in which (i) PcfF recruits PcfG to oriT to catalyze T-strand nicking, (ii) PcfF and PcfG spatially position the relaxosome at the cell membrane to stimulate substrate docking with PcfC, and (iii) PcfC initiates substrate transfer through the pCF10 T4S channel by an NTP-dependent mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostate cancer represents the most commonly diagnosed malignancies in American men and is the second leading cause of male cancer deaths. The overall objectives of this research were designed to understand the cellular and molecular mechanisms of prostatic carcinoma growth and progression. This dissertation was divided into two major parts: (1) to clone and characterize soluble factor(s) associated with bone that may mediate prostatic carcinoma growth and progression; (2) to investigate the roles of extracellular matrix in prostatic carcinogenesis.^ The propensity of prostate cancer cells to metastasize to the axial skeleton and the subsequent osteoblastic reactions observed in the bone indicate the possible reciprocal cellular interaction between prostate cancer cells and the bone microenvironment. To understand the molecular and cellular basis of this interaction, I focused on the identification and cloning of soluble factor(s) from bone stromal cells that may exert direct mitogenic action on cultured prostate cells. A novel BPGF-1 gene expressed specifically by bone and male accessory sex organs (prostate, seminal vesicles, and coagulating gland) was identified and cloned.^ The BPGF-1 was identified and cloned from a cDNA expression library prepared from a human bone stromal cell line, MS. The conditioned medium (CM) of this cell line contains mitogenic materials that induce human prostate cancer cell growth both in vivo and in vitro. The cDNA expression library was screened by an antibody prepared against the mitogenic fraction of the CM.^ The cloned BPGF-1 cDNA comprises 3171 nucleotides with a single open reading frame of 1620 nucleotides encoding 540 amino acids. The BPGF-1 gene encodes two transcripts (3.3 and 2.5 kb) with approximately equal intensity in human cells and tissues, but only one transcript (2.5 kb) in rat and mouse tissues. Southern blot analysis of human genomic DNA revealed a single BPGF-1 gene. The BPGF-1 gene is expressed predominantly in bone and seminal vesicles, but at a substantially lower level in prostate. Polyclonal antibodies generated from synthetic peptides that correspond to the nucleotide sequences of the cloned BPGF-1 cDNA reacted with a putative BPGF-1 protein with an apparent molecular weight of 70 kDa. The conditioned media isolated from COS cells transfected with BPGF-1 cDNA stimulated the proliferation and increased the anchorage-independent growth of prostate epithelial cells. These findings led us to hypothesize that BPGF-1 expression in relevant organs, such as prostate, seminal vesicles, and bone, may lead to local prostate cancer growth, metastasis to the seminal vesicles, and subsequently dissemination to the skeleton.^ To assess the importance of extracellular matrix in prostatic carcinogenesis, the role of extracellular matrix in induction of rat prostatic carcinoma growth in vivo was evaluated. NbE-1, a nontumorigenic rat prostatic epithelial cell line, was induced to form carcinoma in athymic nude hosts by coinjecting them with Matrigel and selected extracellular matrix components. Induction of prostatic tumor formation by laminin and collagen IV was inhibited by their respective antibodies. Prostatic epithelial cells cloned from the tumor tissues were found to form tumors in athymic nude hosts in the absence of exogenously added extracellular matrix. These results suggest that extracellular matrix induce irreversibly prostatic epithelial cells that behave distinctively different from the parental prostatic epithelial cell line. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major goal of this work was to define the role of accessory protein, NARJ, in assembly of nitrate reductase which is a membrane-bound multisubunit enzyme that can catalyze the reduction of nitrate to nitrite under anaerobic growth in E. coli. Nitrate reductase is encoded by the nar GHJI operon under control of the narG promoter. The purified nitrate reductase is composed of three subunits: $\alpha,\ \beta,$ and $\gamma.$ The NARJ protein which is encoded by the third gene (narJ) is not found to be associated with any of the purified preparations of the enzyme, but is required for active nitrate reductase. In this study the product of the narJ gene was identified. NARJ appeared to be produced at a reduced level, compared to the other proteins encoded by the nar operon. Since NARJ could not be overexpressed to a level for an efficient purification, NARJ was expressed and purified as a recombinant protein with polyhistidine tag. The recombinant protein NARJ-6His could functionally replace native NARJ. Purified NARJ-6His is a dimeric protein which contains no identifiable cofactors or unique secondary structure. NARJ was localized in the cytoplasm, and was not associated with nitrate reductase in the membrane. In vivo NARJ activated the $\alpha\beta$ complex and stabilized the $\alpha$ subunit against protease degradation. In the absence of the membrane-bound $\gamma$ subunit, NARJ formed an intermediate complex with $\alpha\beta$ in the cytosol. Based on these studies, NARJ fits the formal definition of a molecular chaperone. It appears to be required only for the biogenesis of nitrate reductase and, therefore, is defined as a private chaperone specifically involved in the assembly of nitrate reductase system. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quiescent human B cells are postulated to go through activation and proliferation phases before undergoing differentiative phase for immunoglobulin secretion. The present studies address some of the aspects of activation and proliferation phase of normal human B cells. The definitions of signals responsible for B cell activation and proliferation resulted in the development of a highly specific, reproducible B cell growth factor (BCGF) assay. This BCGF bioassay utilizes activation by rabbit anti-human IgM-antibody. The functional specificity of this assay for measuring BCGF activity was demonstrated by the finding that target B cells proliferated but did not differentiate. The factor specificity was determined by specific absorption of BCGF by anti-IgM activated B cells. This assay was utilized for the studies of T-B cell collaboration and the essential function of monocytes in the production and/or release of B cell growth factor in a syngeneic in vitro system. It is apparent that highly purified T cells are poor producers of BCGF by themselves and require monocytes to secrete significant quantities of BCGF upon PHA stimulation. Macrophage soluble factor, Interleukin 1, is capable of replacing monocyte function for the release of BCGF by activated T cells. In our studies, B cells are incapable to function as accessory cells to replace monocyte function. Normal B cells are also not capable of producing BCGF under our experimental observations. However, the addition of these B cells at an optimum cell density (T:B ratio 1:1) doubles the monocyte dependent release of BCGF by syngeneic T cells. The augmentative role of B cells is expanded to understand the mechanism of BCGF release by T cells. It is observed from our studies that DR antigen of B cell surface is involved in the release of BCGF. The functional difference between DR of B cells and monocytes is observed as IL-1 could replace DR-treated monocytes whereas failed to replace DR-treated B cells for the release of BCGF by T cells. This functional difference may be attributed to the reported microheterogeneity in DR of B cells and monocytes. The addition of irradiated B cells increased the monocyte dependent T cell proliferation, suggesting the increase of T cell pool for BCGF release. In summary, the development of a biological assay specific for B cell growth factor led to the delineation of an interesting role of B cells in the release of its own growth factor by T cells. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RNA processing and degradation are two important functions that control gene expression and promote RNA fidelity in the cell. A major ribonuclease complex, called the exosome, is involved in both of these processes. The exosome is composed of ten essential proteins with only one catalytically active subunit, called Rrp44. While the same ten essential subunits make up both the nuclear and cytoplasmic exosome, there are nuclear and cytoplasmic exosome cofactors that promote specific exosome functions in each of the cell compartments. To date, it is unclear how the exosome distinguishes between RNA substrates. We hypothesize that compartment specific cofactors may promote the substrate specificity of the exosome. In this work, I characterize several cofactors of the exosome, both nuclear and cytoplasmic. First, I describe the arch domain, which is a unique domain in a nuclear and a cytoplasmic cofactor of the exosome. Specifically, I show that the arch domain of the nuclear exosome cofactor, Mtr4, is required for specific exosome-mediated activities and overlaps functionally with the exosome-associated exonuclease, Rrp6. Further, I show that the arch domain of Ski2 is required for the degradation of normal and aberrant mRNAs. Additionally, this work describes in detail the Mtr4 domains involved in the physical association with other RNA processing proteins. Further, I characterize the minimal Mtr4-binding region in a third exosome cofactor, Trf5. Understanding how exosome cofactors synergistically promote exosome function will provide us a better understanding of how the exosome complex precisely regulates its catalytic activities. As described here, cofactors play a major role in determining the substrate specificity of the nuclear and cytoplasmic exosome. Moreover, specific accessory domains, which are not involved in the catalytic function of the cofactor, are required for substrate targeting of the eukaryotic RNA exosome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basis for the recent transition of Enterococcus faecium from a primarily commensal organism to one of the leading causes of hospital-acquired infections in the United States is not yet understood. To address this, the first part of my project assessed isolates from early outbreaks in the USA and South America using sequence analysis, colony hybridizations, and minimal inhibitory concentrations (MICs) which showed clinical isolates possess virulence and antibiotic resistance determinants that are less abundant or lacking in community isolates. I also revealed that the level of ampicillin resistance increased over time in clinical strains. By sequencing the pbp5 gene, I demonstrated an ~5% difference in the pbp5 gene between strains with MICs <4ug/ml and those with MICs >4µg/ml, but no specific sequence changes correlated with increases in MICs within the latter group. A 3-10% nucleotide difference was also seen in three other genes analyzed, which suggested the existence of two distinct subpopulations of E. faecium. This led to the second part of my project analyzing concatenated core gene sequences, SNPs, the 16S rRNA, and phylogenetics of 21 E. faecium genomes confirming two distinct clades; a community-associated (CA) clade and hospital-associated (HA) clade. Molecular clock calculations indicate that these two clades likely diverged ~ 300,000 to > 1 million years ago, long before the modern antibiotic era. Genomic analysis also showed that, in addition to core genomic differences, HA E. faecium harbor specific accessory genetic elements that may confer selection advantages over CA E. faecium. The third part of my project discovered 6 E. faecium genes with the newly identified “WxL” domain. My analyses, using RT-PCR, western blots, patient sera, whole-cell ELISA, and immunogold electron microscopy, indicated that E. faecium WxL genes exist in operons, encode bacterial cell surface localized proteins, that WxL proteins are antigenic in humans, and are more exposed on the surface of clinical isolates versus community isolates (even though they are ubiquitous in both clades). ELISAs and BIAcore analyses also showed that proteins encoded by these operons bind several different host extracellular matrix proteins, as well as to each other, suggesting a novel cell-surface complex. In summary, my studies provide new insights into the evolution of E. faecium by showing that there are two distantly related clades; one being more successful in the hospital setting. My studies also identified operons encoding WxL proteins whose characteristics could also contribute to colonization and virulence within this species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-Hodgkin's Lymphomas (NHL) are a group (>30) of important human lymphoid cancers that unlike other tumors today, are showing a marked increase in incidence. The lack of insight to the pathogenesis of B-cell NHL poses a significant problem in the early detection and effective treatment of these malignancies. This study shows that large B-cell lymphoma (LBCL) cells, the most common type of B-cell NHL (account for more than 30% of cases), have developed a novel mechanism for autonomous neoplastic B cell growth. We have identified that the key transcription factor NF-κB, is constitutively activated in LBCL cell lines and primary biopsy-derived LBCL cells, suggesting that they are autonomously activated, and do not require accessory T-cell signaling for cell growth and survival. Further studies have indicated that LBCL cells ectopically express an important T-cell associated co-mitogenic factor, CD154 (CD40 ligand), that is able to internally activate the CD401NF-κB pathway, through constitutive binding to its cognate receptor, CD40, on the lymphoma cell surface. CD40 activation triggers the formation of a “Signalosome” comprising virtually the entire canonical CD40/NF-κB signaling pathway that is anchored by CD40 in plasma membrane lipid rafts. The CD40 Signalosome is vulnerable to interdiction by antibody against CD40 that disrupts the Signalosome and induces cell death in the malignant cells. In addition to constitutive NF-κB activation, we have found that the nuclear factor of activated T cells (NFAT) transcription factor is also constitutively activated in LBCL cells. We have demonstrated that the constitutively active NFATc1 and c-rel members of the NFAT and NF-κB families of transcription factors, respectively, interact with each other, bind to the CD154 promoter, and synergistically activate CD154 gene transcription. Down-regulation of NFATc1 and c-rel with small interfering RNA inhibits CD154 gene transcription and lymphoma cell growth. Our findings suggest that continuous CD40 activation not only provides dysregulated proliferative stimuli for lymphoma cell growth and extended tumor cell survival, but also allows continuous regeneration of the CD40 ligand in the lymphoma cell and thereby recharges the system through a positive feedback mechanism. Targeting the CD40/NF-κB signaling pathway could provide potential therapeutic modalities for LBCL cells in the future. ^