11 resultados para Accelerated failure time Model. Correlated data. Imputation. Residuals analysis
em DigitalCommons@The Texas Medical Center
Resumo:
Lung cancer is a devastating disease with very poor prognosis. The design of better treatments for patients would be greatly aided by mouse models that closely resemble the human disease. The most common type of human lung cancer is adenocarcinoma with frequent metastasis. Unfortunately, current models for this tumor are inadequate due to the absence of metastasis. Based on the molecular findings in human lung cancer and metastatic potential of osteosarcomas in mutant p53 mouse models, I hypothesized that mice with both K-ras and p53 missense mutations might develop metastatic lung adenocarcinomas. Therefore, I incorporated both K-rasLA1 and p53RI72HΔg alleles into mouse lung cells to establish a more faithful model for human lung adenocarcinoma and for translational and mechanistic studies. Mice with both mutations ( K-rasLA1/+ p53R172HΔg/+) developed advanced lung adenocarcinomas with similar histopathology to human tumors. These lung adenocarcinomas were highly aggressive and metastasized to multiple intrathoracic and extrathoracic sites in a pattern similar to that seen in lung cancer patients. This mouse model also showed gender differences in cancer related death and developed pleural mesotheliomas in 23.2% of them. In a preclinical study, the new drug Erlotinib (Tarceva) decreased the number and size of lung lesions in this model. These data demonstrate that this mouse model most closely mimics human metastatic lung adenocarcinoma and provides an invaluable system for translational studies. ^ To screen for important genes for metastasis, gene expression profiles of primary lung adenocarcinomas and metastases were analyzed. Microarray data showed that these two groups were segregated in gene expression and had 79 highly differentially expressed genes (more than 2.5 fold changes and p<0.001). Microarray data of Bub1b, Vimentin and CCAM1 were validated in tumors by quantitative real-time PCR (QPCR). Bub1b , a mitotic checkpoint gene, was overexpressed in metastases and this correlated with more chromosomal abnormalities in metastatic cells. Vimentin, a marker of epithelial-mesenchymal transition (EMT), was also highly expressed in metastases. Interestingly, Twist, a key EMT inducer, was also highly upregulated in metastases by QPCR, and this significantly correlated with the overexpression of Vimentin in the same tumors. These data suggest EMT occurs in lung adenocarcinomas and is a key mechanism for the development of metastasis in K-ras LA1/+ p53R172HΔg/+ mice. Thus, this mouse model provides a unique system to further probe the molecular basis of metastatic lung cancer.^
Resumo:
Mixture modeling is commonly used to model categorical latent variables that represent subpopulations in which population membership is unknown but can be inferred from the data. In relatively recent years, the potential of finite mixture models has been applied in time-to-event data. However, the commonly used survival mixture model assumes that the effects of the covariates involved in failure times differ across latent classes, but the covariate distribution is homogeneous. The aim of this dissertation is to develop a method to examine time-to-event data in the presence of unobserved heterogeneity under a framework of mixture modeling. A joint model is developed to incorporate the latent survival trajectory along with the observed information for the joint analysis of a time-to-event variable, its discrete and continuous covariates, and a latent class variable. It is assumed that the effects of covariates on survival times and the distribution of covariates vary across different latent classes. The unobservable survival trajectories are identified through estimating the probability that a subject belongs to a particular class based on observed information. We applied this method to a Hodgkin lymphoma study with long-term follow-up and observed four distinct latent classes in terms of long-term survival and distributions of prognostic factors. Our results from simulation studies and from the Hodgkin lymphoma study demonstrated the superiority of our joint model compared with the conventional survival model. This flexible inference method provides more accurate estimation and accommodates unobservable heterogeneity among individuals while taking involved interactions between covariates into consideration.^
Resumo:
Prevalent sampling is an efficient and focused approach to the study of the natural history of disease. Right-censored time-to-event data observed from prospective prevalent cohort studies are often subject to left-truncated sampling. Left-truncated samples are not randomly selected from the population of interest and have a selection bias. Extensive studies have focused on estimating the unbiased distribution given left-truncated samples. However, in many applications, the exact date of disease onset was not observed. For example, in an HIV infection study, the exact HIV infection time is not observable. However, it is known that the HIV infection date occurred between two observable dates. Meeting these challenges motivated our study. We propose parametric models to estimate the unbiased distribution of left-truncated, right-censored time-to-event data with uncertain onset times. We first consider data from a length-biased sampling, a specific case in left-truncated samplings. Then we extend the proposed method to general left-truncated sampling. With a parametric model, we construct the full likelihood, given a biased sample with unobservable onset of disease. The parameters are estimated through the maximization of the constructed likelihood by adjusting the selection bias and unobservable exact onset. Simulations are conducted to evaluate the finite sample performance of the proposed methods. We apply the proposed method to an HIV infection study, estimating the unbiased survival function and covariance coefficients. ^
Resumo:
My dissertation focuses mainly on Bayesian adaptive designs for phase I and phase II clinical trials. It includes three specific topics: (1) proposing a novel two-dimensional dose-finding algorithm for biological agents, (2) developing Bayesian adaptive screening designs to provide more efficient and ethical clinical trials, and (3) incorporating missing late-onset responses to make an early stopping decision. Treating patients with novel biological agents is becoming a leading trend in oncology. Unlike cytotoxic agents, for which toxicity and efficacy monotonically increase with dose, biological agents may exhibit non-monotonic patterns in their dose-response relationships. Using a trial with two biological agents as an example, we propose a phase I/II trial design to identify the biologically optimal dose combination (BODC), which is defined as the dose combination of the two agents with the highest efficacy and tolerable toxicity. A change-point model is used to reflect the fact that the dose-toxicity surface of the combinational agents may plateau at higher dose levels, and a flexible logistic model is proposed to accommodate the possible non-monotonic pattern for the dose-efficacy relationship. During the trial, we continuously update the posterior estimates of toxicity and efficacy and assign patients to the most appropriate dose combination. We propose a novel dose-finding algorithm to encourage sufficient exploration of untried dose combinations in the two-dimensional space. Extensive simulation studies show that the proposed design has desirable operating characteristics in identifying the BODC under various patterns of dose-toxicity and dose-efficacy relationships. Trials of combination therapies for the treatment of cancer are playing an increasingly important role in the battle against this disease. To more efficiently handle the large number of combination therapies that must be tested, we propose a novel Bayesian phase II adaptive screening design to simultaneously select among possible treatment combinations involving multiple agents. Our design is based on formulating the selection procedure as a Bayesian hypothesis testing problem in which the superiority of each treatment combination is equated to a single hypothesis. During the trial conduct, we use the current values of the posterior probabilities of all hypotheses to adaptively allocate patients to treatment combinations. Simulation studies show that the proposed design substantially outperforms the conventional multi-arm balanced factorial trial design. The proposed design yields a significantly higher probability for selecting the best treatment while at the same time allocating substantially more patients to efficacious treatments. The proposed design is most appropriate for the trials combining multiple agents and screening out the efficacious combination to be further investigated. The proposed Bayesian adaptive phase II screening design substantially outperformed the conventional complete factorial design. Our design allocates more patients to better treatments while at the same time providing higher power to identify the best treatment at the end of the trial. Phase II trial studies usually are single-arm trials which are conducted to test the efficacy of experimental agents and decide whether agents are promising to be sent to phase III trials. Interim monitoring is employed to stop the trial early for futility to avoid assigning unacceptable number of patients to inferior treatments. We propose a Bayesian single-arm phase II design with continuous monitoring for estimating the response rate of the experimental drug. To address the issue of late-onset responses, we use a piece-wise exponential model to estimate the hazard function of time to response data and handle the missing responses using the multiple imputation approach. We evaluate the operating characteristics of the proposed method through extensive simulation studies. We show that the proposed method reduces the total length of the trial duration and yields desirable operating characteristics for different physician-specified lower bounds of response rate with different true response rates.
Resumo:
Background: The follow-up care for women with breast cancer requires an understanding of disease recurrence patterns and the follow-up visit schedule should be determined according to the times when the recurrence are most likely to occur, so that preventive measure can be taken to avoid or minimize the recurrence. Objective: To model breast cancer recurrence through stochastic process with an aim to generate a hazard function for determining a follow-up schedule. Methods: We modeled the process of disease progression as the time transformed Weiner process and the first-hitting-time was used as an approximation of the true failure time. The women's "recurrence-free survival time" or a "not having the recurrence event" is modeled by the time it takes Weiner process to cross a threshold value which represents a woman experiences breast cancer recurrence event. We explored threshold regression model which takes account of covariates that contributed to the prognosis of breast cancer following development of the first-hitting time model. Using real data from SEER-Medicare, we proposed models of follow-up visits schedule on the basis of constant probability of disease recurrence between consecutive visits. Results: We demonstrated that the threshold regression based on first-hitting-time modeling approach can provide useful predictive information about breast cancer recurrence. Our results suggest the surveillance and follow-up schedule can be determined for women based on their prognostic factors such as tumor stage and others. Women with early stage of disease may be seen less frequently for follow-up visits than those women with locally advanced stages. Our results from SEER-Medicare data support the idea of risk-controlled follow-up strategies for groups of women. Conclusion: The methodology we proposed in this study allows one to determine individual follow-up scheduling based on a parametric hazard function that incorporates known prognostic factors.^
Resumo:
The factorial validity of the SF-36 was evaluated using confirmatory factor analysis (CFA) methods, structural equation modeling (SEM), and multigroup structural equation modeling (MSEM). First, the measurement and structural model of the hypothesized SF-36 was explicated. Second, the model was tested for the validity of a second-order factorial structure, upon evidence of model misfit, determined the best-fitting model, and tested the validity of the best-fitting model on a second random sample from the same population. Third, the best-fitting model was tested for invariance of the factorial structure across race, age, and educational subgroups using MSEM.^ The findings support the second-order factorial structure of the SF-36 as proposed by Ware and Sherbourne (1992). However, the results suggest that: (a) Mental Health and Physical Health covary; (b) general mental health cross-loads onto Physical Health; (c) general health perception loads onto Mental Health instead of Physical Health; (d) many of the error terms are correlated; and (e) the physical function scale is not reliable across these two samples. This hierarchical factor pattern was replicated across both samples of health care workers, suggesting that the post hoc model fitting was not data specific. Subgroup analysis suggests that the physical function scale is not reliable across the "age" or "education" subgroups and that the general mental health scale path from Mental Health is not reliable across the "white/nonwhite" or "education" subgroups.^ The importance of this study is in the use of SEM and MSEM in evaluating sample data from the use of the SF-36. These methods are uniquely suited to the analysis of latent variable structures and are widely used in other fields. The use of latent variable models for self reported outcome measures has become widespread, and should now be applied to medical outcomes research. Invariance testing is superior to mean scores or summary scores when evaluating differences between groups. From a practical, as well as, psychometric perspective, it seems imperative that construct validity research related to the SF-36 establish whether this same hierarchical structure and invariance holds for other populations.^ This project is presented as three articles to be submitted for publication. ^
Resumo:
Lung cancer is the leading cause of cancer death. However, poor survival using conventional therapies fuel the search for more rational interventions. The objective of this study was to design and implement a 4HPR-radiation interaction model in NSCLC, employing a traditional clinical modality (radiation), a relatively new, therapeutically unexplored agent (4HPR) and rationally combining them based on molecular mechanistic findings pertaining to their interactions. To test the hypothesis that 4HPR sensitizes cells to radiation-induced cell death via G2+M accumulation, we designed a working model consisting of H522 adenocarcinoma cells (p53, K-ras mutated) derived from an NSCLC patient; 4HPR at concentrations up to 10 μM; and X radiation up to 6 Gy generated by a patient-dedicated Phillips RT-250 X ray unit at 250 KV, 15 mA, 1.85 Gy/min. We found that 4HPR produced time- and dose-dependent morphological changes, growth inhibition, and DNA damage-inducing enhancement of reactive oxygen species. A transient G2+M accumulation of cells maximal at 24 h of continuous 4HPR exposure was used for irradiation time scheduling. Our data demonstrated enhanced cell death (both apoptotic and necrotic) in irradiated cells pre-treated with 4HPR versus those with either stressor alone. 4HPR's effect of increased NSCLC cells' radioresponse was confirmed by clonogenic assay. To explore these practical findings from a molecular mechanistic perspective, we further investigated and showed that levels of cyclin B1 and p34cdc2 kinase—both components of the mitosis promoting factor (MPF) regulating the G2/M transition—did not change following 4HPR treatment. Likewise, cdc25C phosphatase was not altered. However, enhanced p34cdc2 phosphorylation on its Thr14Tyr15 residues—indicative of its inactivation and increased expression of MPF negative regulators chk1 and wee1 kinases—were supportive of explaining 4HPR-treated cells' accumulation. Hence, p34cdc2 phosphorylation, chk1, and wee1 warrant further evaluation as potential molecular targets for 4HPR-X radiation combination. In summary, we (1) demonstrated that 4HPR not only induces cell death by itself, but also increases NSCLC cells' subsequent radioresponse, indicative of potential clinical applicability, and (2) for the first time, shed light on deciphering 4HPR-X radiation molecular mechanisms of interaction, including the finding of 4HPR's role as a p34cdc2 inactivator via Thr14Tyr15 phosphorylation. ^
Resumo:
Arterial spin labeling (ASL) is a technique for noninvasively measuring cerebral perfusion using magnetic resonance imaging. Clinical applications of ASL include functional activation studies, evaluation of the effect of pharmaceuticals on perfusion, and assessment of cerebrovascular disease, stroke, and brain tumor. The use of ASL in the clinic has been limited by poor image quality when large anatomic coverage is required and the time required for data acquisition and processing. This research sought to address these difficulties by optimizing the ASL acquisition and processing schemes. To improve data acquisition, optimal acquisition parameters were determined through simulations, phantom studies and in vivo measurements. The scan time for ASL data acquisition was limited to fifteen minutes to reduce potential subject motion. A processing scheme was implemented that rapidly produced regional cerebral blood flow (rCBF) maps with minimal user input. To provide a measure of the precision of the rCBF values produced by ASL, bootstrap analysis was performed on a representative data set. The bootstrap analysis of single gray and white matter voxels yielded a coefficient of variation of 6.7% and 29% respectively, implying that the calculated rCBF value is far more precise for gray matter than white matter. Additionally, bootstrap analysis was performed to investigate the sensitivity of the rCBF data to the input parameters and provide a quantitative comparison of several existing perfusion models. This study guided the selection of the optimum perfusion quantification model for further experiments. The optimized ASL acquisition and processing schemes were evaluated with two ASL acquisitions on each of five normal subjects. The gray-to-white matter rCBF ratios for nine of the ten acquisitions were within ±10% of 2.6 and none were statistically different from 2.6, the typical ratio produced by a variety of quantitative perfusion techniques. Overall, this work produced an ASL data acquisition and processing technique for quantitative perfusion and functional activation studies, while revealing the limitations of the technique through bootstrap analysis. ^
Resumo:
Rational health services planning requires an examination of the effects of various factors on the health status of a population within a given set of socioeconomic circumstances. The commonly accepted explanations for improved health in the less developed countries (LDCs) are: Health Service Resources available to a population, Environmental and Life conditions, and the Econosociocultural Characteristics of the population.^ In the context of the low economic base from which many LDCs initiate development activities, a strong imperative exists for identifying in which of these major areas public health policy would be most effective in terms of improving health. A new conceptual model is proposed that would be used for future policy analyses to assess what changes in health status of populations in LDCs can be expected as direct functions of increased health service resources, and of improved environmental and econosociocultural conditions.^ While direct policy analysis is ill-advised at this time due to data inadequacy, the model is illustrated using data presently available for twenty-five relatively homogeneous Sub-Sahara African countries. Within the limitations of available data, study findings indicate that while econosociocultural conditions were the most important explanatory factors of the three major independent variables in 1970, health service resources became the most important in 1975. Study findings are inconclusive at this time with regards to the relative contributions of physicians and medical assistants in explaining variances in mortality in these countries.^ Because of the deficient nature of available data, study findings should be interpreted very cautiously. Tests of statistical significance of study findings were by-passed because of their situational technical inappropriateness. This study is significant in being the first of its kind and scope to focus on the Sub-Sahara African region of the World Health Organization, using the Wroclaw Taxonomic Method in conjunction with a stepwise regression technique. It is desirable, therefore, to examine the observed magnitude and directional consistency of all hypothesized relationships, even if evidence is inconclusive. ^
Resumo:
Pneumonia is a well-documented and common respiratory infection in patients with acute traumatic spinal cord injuries, and may recur during the course of acute care. Using data from the North American Clinical Trials Network (NACTN) for Spinal Cord Injury, the incidence, timing, and recurrence of pneumonia were analyzed. The two main objectives were (1) to investigate the time and potential risk factors for the first occurrence of pneumonia using the Cox Proportional Hazards model, and (2) to investigate pneumonia recurrence and its risk factors using a Counting Process model that is a generalization of the Cox Proportional Hazards model. The results from survival analysis suggested that surgery, intubation, American Spinal Injury Association (ASIA) grade, direct admission to a NACTN site and age (older than 65 or not) were significant risks for first event of pneumonia and multiple events of pneumonia. The significance of this research is that it has the potential to identify patients at the time of admission who are at high risk for the incidence and recurrence of pneumonia. Knowledge and the time of occurrence of pneumonias are important factors for the development of prevention strategies and may also provide some insights into the selection of emerging therapies that compromise the immune system. ^
Resumo:
Despite continued research and public health efforts to reduce smoking during pregnancy, prenatal cessation rates in the United States have decreased and the incidence of low birth weight has increased from 1985 to 1991. Lower socioeconomic status women who are at increased risk for poor pregnancy outcomes may be resistant to current intervention efforts during pregnancy. The purpose of this dissertation was to investigate the determinants of continued smoking and quitting among low-income pregnant women.^ Using data from cross-sectional surveys of 323 low-income pregnant smokers, the first study developed and tested measures of the pros and cons of smoking during pregnancy. The original decisional balance measure for smoking was compared with a new measure that added items thought to be more salient to the target population. Confirmatory factor analysis using structural equation modeling showed neither the original nor new measure fit the data adequately. Using behavioral science theory, content from interviews with the population, and statistical evidence, two 7-item scales representing the pros and cons were developed from a portion (n = 215) of the sample and successfully cross-validated on the remainder of the sample (n = 108). Logistic regression found only pros were significantly associated with continued smoking. In a discriminant function analysis, stage of change was significantly associated with pros and cons of smoking.^ The second study examined the structural relationships between psychosocial constructs representing some of the levels of and the pros and cons of smoking. The cross-sectional design mandates that statements made regarding prediction do not prove causation or directionality from the data or methods analysis. Structural equation modeling found the following: more stressors and family criticism were significantly more predictive of negative affect than social support; a bi-directional relationship was found between negative affect and current nicotine addiction; and negative affect, addiction, stressors, and family criticism were significant predictors of pros of smoking.^ The findings imply reversing the trend of decreasing smoking cessation during pregnancy may require supplementing current interventions for this population of pregnant smokers with programs addressing nicotine addiction, negative affect, and other psychosocial factors such as family functioning and stressors. ^