2 resultados para Academies of swimming
em DigitalCommons@The Texas Medical Center
Resumo:
In Halobacterium salinarum phototaxis is mediated by the visual pigment-like photoreceptors sensory rhodopsin I (SRI) and II (SRII). SRI is a receptor for attractant orange and repellent UV-blue light, and SRII is a receptor for repellent blue-green light, and transmit signals through the membrane-bound transducer proteins HtrI and HtrII, respectively. ^ The primary sequences of HtrI and HtrII predict 2 transmembrane helices (TM1 and TM2) followed by a hydrophilic cytoplasmic domain. HtrII shows an additional large periplasmic domain for chemotactic ligand binding. The cytoplasmic regions are homologous to the adaptation and signaling domains of eubacterial chemotaxis receptors and, like their eubacterial homologs, modulate the transfer of phosphate groups from the histidine protein kinase CheA to the response regulator CheY that in turn controls flagellar motor rotation and the cell's swimming behavior. HtrII and Htrl are dimeric proteins which were predicted to contain carboxylmethylation sites in a 4-helix bundle in their cytoplasmic regions, like eubacterial chemotaxis receptors. ^ The phototaxis transducers of H. salinarum have provided a model for studying receptor/tranducer interaction, adaptation in sensory systems, and the role of membrane molecular complexes in signal transduction. ^ Interaction between the transducer HtrI and the photoreceptor SRI was explored by creating six deletion constructs of HtrI, with progressively shorter cytoplasmic domains. This study confirmed a putative chaperone-like function of HtrI, facilitating membrane insertion or stability of the SRI protein, a phenomenon previously observed in the laboratory, and identified the smallest HtrI fragment containing interaction sites for both the chaperone-like function and SRI photocycle control. The active fragment consisted of the N-terminal 147 residues of the 536-residue HtrI protein, a portion of the molecule predicted to contain the two transmembrane helices and the first ∼20% of the cytoplasmic portion of the protein. ^ Phototaxis and chemotaxis sensory systems adapt to stimuli, thereby signaling only in response to changes in environmental conditions. Observations made in our and in other laboratories and homologies between the halobacterial transducers with the chemoreceptors of enteric bacteria anticipated a role for methylation in adaptation to chemo- and photostimuli. By site directed mutagenesis we identified the methylation sites to be the glutamate pairs E265–E266 in HtrI and E513–E514 in HtrII. Cells containing the unmethylatable transducers are still able to perform phototaxis and adapt to light stimuli. By pulse-chase analysis we found that methanol production from carboxylmethyl group hydrolysis occurs upon specific photo stimulation of unmethylatable HtrI and HtrII and is due to turnover of methyl groups on other transducers. We demonstrated that the turnover in wild-type H. salinarum cells that follows a positive stimulus is CheY-dependent. The CheY-feedback pathway does not require the stimulated transducer to be methylatable and operates globally on other transducers present in the cell. ^ Assembly of signaling molecules into architecturally defined complexes is considered essential in transmission of the signals. The spectroscopic characteristics of SRI were exploited to study the stoichiometric composition in the phototaxis complex SRI-HtrI. A molar ratio of 2.1 HtrI: 1 SRI was obtained, suggesting that only 1 SRI binding site is occupied on the HtrI homodimer. We used gold-immunoelectron microscopy and light fluorescence microscopy to investigate the structural organization and the distribution of other halobacterial transducers. We detected clusters of transducers, usually near the cell's poles, providing a ultrastructural basis for the global effects and intertransducer communication we observe. ^
Resumo:
Background. The Cypress Creek is one of the main tributaries of Lake Houston, which provides drinking water to 21.4 million customers. Furthermore, the watershed is being utilized for contact and non-contact recreation, such as canoeing, swimming, hiking trail, and picnics. Water along the creek is impacted by numerous wastewater outfalls from both point and non-point sources. As the creek flows into Lake Houston, it carries both organic and inorganic contaminants that may affect the drinking water quality of this important water source reservoir. Objective. This study was carried out to evaluate the inorganic chemical load of the water in Cypress Creek along its entire length, from the headwaters in Waller County and up to the drainage into Lake Houston. The purpose was to determine whether there are hazardous concentrations of metals in the water and what would be the likely sources. Method. Samples were collected at 29 sites along the creek and analyzed for 29 metals, 17 of which were on the Environmental Protection Agency priority pollution list. Public access sites primarily at bridges were used for sample collection. Samples were transported on ice to the University Of Texas School Of Public Health laboratory, spiked with 2 ml HNO3 kept overnight in the refrigerator, and the following day transported to the EPA laboratory for analysis. Analysis was done by EPA Method 200.7-ICP, Method 200.8ICP/MS and Method 245.1-CVAAS. Results. Metals were present above the detection limits at 65% of sites. Concentrations of aluminum, iron, sodium, potassium, magnesium, and calcium, were particularly high at all sites. Aluminum, sodium, and iron concentrations greatly exceeded the EPA secondary drinking water standards at all sites. ^ Conclusion. The recreational water along Cypress Creek is impacted by wastewater from both permitted and non-permitted outfalls, which deposit inorganic substances into the water. Although a number of inorganic contaminants were present in the water, toxic metals regulated by the EPA were mostly below the recommended limits. However, high concentrations of aluminum, sodium, and iron in the Cypress Creek bring forward the issue of unauthorized discharges of salt water from mining, as well as industrial and domestic wastewater.^