4 resultados para Academics and Scientific Careers

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The Virtual Molecular Biology Lab is an innovative, computer-based educational program designed to teach advanced high school biology students how to create a transgenic mouse model in a simulated laboratory setting. It was created in an effort to combat the current decrease in adolescent enthusiasm for and academic achievement in science and science careers, especially in Hispanic students. Because studies have found that hands-on learning, particularly computer-based instruction, is effective in enhancing science achievement, the Virtual Lab is a potential tool for increasing the number of Hispanic students that choose to enter science fields. [See PDF for complete abstract]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As schools are pressured to perform on academics and standardized examinations, schools are reluctant to dedicate increased time to physical activity. After-school exercise and health programs may provide an opportunity to engage in more physical activity without taking time away from coursework during the day. The current study is a secondary data analysis of data from a randomized trial of a 10-week after-school program (six schools, n = 903) that implemented an exercise component based on the CATCH physical activity component and health modules based on the culturally-tailored Bienestar health education program. Outcome variables included BMI and aerobic capacity, health knowledge and healthy food intentions as assessed through path analysis techniques. Both the baseline model (χ2 (df = 8) = 16.90, p = .031; RMSEA = .035 (90% CI of .010–.058), NNFI = 0.983 and the CFI = 0.995) and the model incorporating intervention participation proved to be a good fit to the data (χ2 (df = 10) = 11.59, p = .314. RMSEA = .013 (90% CI of .010–.039); NNFI = 0.996 and CFI = 0.999). Experimental group participation was not predictive of changes in health knowledge, intentions to eat healthy foods or changes in Body Mass Index, but it was associated with increased aerobic capacity, β = .067, p < .05. School characteristics including SES and Language proficiency proved to be significantly associated with changes in knowledge and physical indicators. Further effects of school level variables on intervention outcomes are recommended so that tailored interventions can be developed aimed at the specific characteristics of each participating school. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of respiratory motion on patient anatomy poses a challenge to accurate radiation therapy, especially in lung cancer treatment. Modern radiation therapy planning uses models of tumor respiratory motion to account for target motion in targeting. The tumor motion model can be verified on a per-treatment session basis with four-dimensional cone-beam computed tomography (4D-CBCT), which acquires an image set of the dynamic target throughout the respiratory cycle during the therapy session. 4D-CBCT is undersampled if the scan time is too short. However, short scan time is desirable in clinical practice to reduce patient setup time. This dissertation presents the design and optimization of 4D-CBCT to reduce the impact of undersampling artifacts with short scan times. This work measures the impact of undersampling artifacts on the accuracy of target motion measurement under different sampling conditions and for various object sizes and motions. The results provide a minimum scan time such that the target tracking error is less than a specified tolerance. This work also presents new image reconstruction algorithms for reducing undersampling artifacts in undersampled datasets by taking advantage of the assumption that the relevant motion of interest is contained within a volume-of-interest (VOI). It is shown that the VOI-based reconstruction provides more accurate image intensity than standard reconstruction. The VOI-based reconstruction produced 43% fewer least-squares error inside the VOI and 84% fewer error throughout the image in a study designed to simulate target motion. The VOI-based reconstruction approach can reduce acquisition time and improve image quality in 4D-CBCT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cryoablation for small renal tumors has demonstrated sufficient clinical efficacy over the past decade as a non-surgical nephron-sparing approach for treating renal masses for patients who are not surgical candidates. Minimally invasive percutaneous cryoablations have been performed with image guidance from CT, ultrasound, and MRI. During the MRI-guided cryoablation procedure, the interventional radiologist visually compares the iceball size on monitoring images with respect to the original tumor on separate planning images. The comparisons made during the monitoring step are time consuming, inefficient and sometimes lack the precision needed for decision making, requiring the radiologist to make further changes later in the procedure. This study sought to mitigate uncertainty in these visual comparisons by quantifying tissue response to cryoablation and providing visualization of the response during the procedure. Based on retrospective analysis of MR-guided cryoablation patient data, registration and segmentation algorithms were investigated and implemented for periprocedural visualization to deliver iceball position/size with respect to planning images registered within 3.3mm with at least 70% overlap and a quantitative logit model was developed to relate perfusion deficit in renal parenchyma visualized in verification images as a result of iceball size visualized in monitoring images. Through retrospective study of 20 patient cases, the relationship between likelihood of perfusion loss in renal parenchyma and distance within iceball was quantified and iteratively fit to a logit curve. Using the parameters from the logit fit, the margin for 95% perfusion loss likelihood was found to be 4.28 mm within the iceball. The observed margin corresponds well with the clinically accepted margin of 3-5mm within the iceball. In order to display the iceball position and perfusion loss likelihood to the radiologist, algorithms were implemented to create a fast segmentation and registration module which executed in under 2 minutes, within the clinically-relevant 3 minute monitoring period. Using 16 patient cases, the average Hausdorff distance was reduced from 10.1mm to 3.21 mm with average DSC increased from 46.6% to 82.6% before and after registration.