4 resultados para Aberration

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research has been to study the molecular basis for chromosome aberration formation. Predicated on a variety of data, Mitomycin C (MMC)-induced DNA damage has been postulated to cause the formation of chromatid breaks (and gaps) by preventing the replication of regions of the genome prior to mitosis. The basic protocol for these experiments involved treating synchronized Hela cells in G(,1)-phase with a 1 (mu)g/ml dose of MMC for one hour. After removing the drug, cells were then allowed to progress to mitosis and were harvested for analysis by selective detachment. Utilizing the alkaline elution assay for DNA damage, evidence was obtained to support the conclusion that Hela cells can progress through S-phase into mitosis with intact DNA-DNA interstrand crosslinks. A higher level of crosslinking was observed in those cells remaining in interphase compared to those able to reach mitosis at the time of analysis. Dual radioisotope labeling experiments revealed that, at this dose, these crosslinks were associated to the same extent with both parental and newly replicated DNA. This finding was shown not to be the result of a two-step crosslink formation mechanism in which crosslink levels increase with time after drug treatment. It was also shown not to be an artefact of the double-labeling protocol. Using neutral CsCl density gradient ultracentrifugation of mitotic cells containing BrdU-labeled newly replicated DNA, control cells exhibited one major peak at a heavy/light density. However, MMC-treated cells had this same major peak at the heavy/light density, in addition to another minor peak at a density characteristic for light/light DNA. This was interpreted as indicating either: (1) that some parental DNA had not been replicated in the MMC treated sample or; (2) that a recombination repair mechanism was operational. To distinguish between these two possibilities, flow cytometric DNA fluorescence (i.e., DNA content) measurements of MMC-treated and control cells were made. These studies revealed that the mitotic cells that had been treated with MMC while in G(,1)-phase displayed a 10-20% lower DNA content than untreated control cells when measured under conditions that neutralize chromosome condensation effects (i.e., hypotonic treatment). These measurements were made under conditions in which the binding of the drug, MMC, was shown not to interfere with the stoichiometry of the ethidium bromide-mithramycin stain. At the chromosome level, differential staining techniques were used in an attempt to visualize unreplicated regions of the genome, but staining indicative of large unreplicated regions was not observed. These results are best explained by a recombinogenic mechanism. A model consistent with these results has been proposed.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Renal cell carcinoma (RCC) is the most common malignant tumor of the kidney. Characterization of RCC tumors indicates that the most frequent genetic event associated with the initiation of tumor formation involves a loss of heterozygosity or cytogenetic aberration on the short arm of human chromosome 3. A tumor suppressor locus Nonpapillary Renal Carcinoma-1 (NRC-1, OMIM ID 604442) has been previously mapped to a 5–7 cM region on chromosome 3p12 and shown to induce rapid tumor cell death in vivo, as demonstrated by functional complementation experiments. ^ To identify the gene that accounts for the tumor suppressor activities of NRC-1, fine-scale physical mapping was conducted with a novel real-time quantitative PCR based method developed in this study. As a result, NRC-1 was mapped within a 4.6-Mb region defined by two unique sequences within UniGene clusters Hs.41407 and Hs.371835 (78,545Kb–83,172Kb in the NCBI build 31 physical map). The involvement of a putative tumor suppressor gene Robo1/Dutt1 was excluded as a candidate for NRC-1. Furthermore, a transcript map containing eleven candidate genes was established for the 4.6-Mb region. Analyses of gene expression patterns with real-time quantitative RT-PCR assays showed that one of the eleven candidate genes in the interval (TSGc28) is down-regulated in 15 out of 20 tumor samples compared with matched normal samples. Three exons of this gene have been identified by RACE experiments, although additional exon(s) seem to exist. Further gene characterization and functional studies are required to confirm the gene as a true tumor suppressor gene. ^ To study the cellular functions of NRC-1, gene expression profiles of three tumor suppressive microcell hybrids, each containing a functional copy of NRC-1, were compared with those of the corresponding parental tumor cell lines using 16K oligonucleotide microarrays. Differentially expressed genes were identified. Analyses based on the Gene Ontology showed that introduction of NRC-1 into tumor cell lines activates genes in multiple cellular pathways, including cell cycle, signal transduction, cytokines and stress response. NRC-1 is likely to induce cell growth arrest indirectly through WEE1. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human cytomegalovirus (HCMV) infection occurs early in life and leads to life-long viral persistence. An association between HCMV infection and malignant gliomas has been reported suggesting that HCMV may play a role in glioma pathogenesis. The reported effects of HCMV on cells suggest that it could facilitate accrual of genotoxic damage. We therefore tested the hypothesis that HCMV infection modifies the sensitivity of cells to genetic damage from environmental insults such as γ-irradiation. Peripheral blood lymphocytes from 110 glioma patients and 100 controls were used to measure the level of both chromosome damage and cell death as endpoints for genetic instability. For each study participant, the extent of baseline, HCMV-, γ-radiation- and both – induced genetic instability was evaluated. Radiation induced a significant increase in aberration frequency over baseline in both cases and controls. Similarly, HCMV induced a significant increase in aberration frequency regardless of the disease status. Interestingly, HCMV induced damage was either equal or higher than that induced by radiation. Infected with HCMV prior to challenge with γ-radiation demonstrated a significant increase in the aberration frequency as compared to baseline, radiation- or HCMV-treated cells. With regards to apoptosis, cases showed a lower percentage of induction following in vitro exposure to γ-radiation and/or HCMV infection. The level of apoptosis was inversely related to the amount of chromosome damage in the cases, but not in the controls. These data indicate that, HCMV infection enhances the sensitivity of PBLs to γ-radiation-induced genetic damage.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: An increased understanding of the pathogenesis of cancer at the molecular level has led to the development of personalized cancer therapy based on the mutation status of the tumor. Tailoring treatments to genetic signatures has improved treatment outcomes in patients with advanced cancer. We conducted a meta-analysis to provide a quantitative summary of the response to treatment on a phase I clinical trial matched to molecular aberration in patients with advanced solid tumors. ^ Methods: Original studies that reported the results of phase I clinical trials in patients with advanced cancer treated with matched anti-cancer therapies between January 2006 and November 2011 were identified through an extensive search of Medline, Embase, Web of Science and Cochrane Library databases. Odds Ratio (OR) with 95% confidence interval (CI) was estimated for each study to assess the strength of an association between objective response rate (ORR) and mutation status. Random effects model was used to estimate the pooled OR and their 95% CI was derived. Funnel plot was used to assess publication bias. ^ Results: Thirteen studies published between January 2006 and November 2011that reported on responses to matched phase I clinical trials in patients with advanced cancer were included in the meta-analysis. Nine studies reported on the responses seen in 538 of the 835 patients with driver mutations responsive to therapy and seven studies on the responses observed in 234 of the 306 patients with mutation predictive for negative response. Random effects model was used to estimate pooled OR, which was 7.767(95% CI = 4.199 − 14.366; p-value=0.000) in patients with activating mutations that were responsive to therapy and 0.287 (95% CI = 0.119 − 0.694; p-value=0.009) in patients with mutation predictive of negative response. ^ Conclusion: It is evident from the meta-analysis that somatic mutations present in tumor tissue of patients are predictive of responses to therapy in patients with advanced cancer in phase I setting. Plethora of research and growing evidence base indicate that selection of patients based on mutation analysis of the tumor and personalizing therapy is a step forward in the war against cancer.^