12 resultados para AUTOPHAGY
em DigitalCommons@The Texas Medical Center
Resumo:
A patient diagnosed with a glioma, generally, has an average of 14 months year to live after implementation of conventional therapies such as surgery, chemotherapy, and radiation. Glioblastomas are highly lethal because of their aggressive nature and resistance to conventional therapies and apoptosis. Thus other avenues of cell death urgently need to be explored. Autophagy, which is also known as programmed cell death type II, has recently been identified as an alternative mechanism to kill apoptosis- resistant cancer cells. Traditionally, researchers have studied how cells undergo autophagy during viral infection as an immune response mechanism, but recently researchers have discovered how viruses have evolved to manipulate autophagy for their benefit. Extensive studies of viral-induced autophagy provide a rationale to investigate other viruses, such as the adenovirus, which may be developed as part of a therapy against cancers resistant to apoptosis. Despite the present and relatively poor understanding of the mechanisms behind adenoviral-induced autophagy, adenovirus is a promising candidate, because of its ability to efficiently eradicate tumors. A better understanding of how the adenovirus induces autophagy will allow for the development of viruses with increased oncolytic potency. We hypothesized that adenovirus induces autophagy in order to aid in lysis. We found that replication, not infection, was required for adenovirus-mediated autophagy. Loss of function analysis of early genes revealed that, of the early genes tested, no single gene was sufficient to induce autophagy alone. Examination of cellular pathways for their role in autophagy during adenovirus infection revealed a function for the eIF2α pathway and more specifically the GCN2 kinase. Cells lacking GCN2 are more resistant to adenovirus-mediated autophagy in vitro; in vivo we also found these cells fail to undergo autophagy, but display more cell death. We believe that autophagy is a protective mechanism the cell employs during adenoviral infection, and in the in vivo environment, cells cannot recover from virus infection and are more susceptible to death. Congruently, infected cells deficient for autophagy through deletion of ATG5 are not able undergo productive cell lysis, providing evidence that the destruction of the cytoplasm and cell membrane through autophagy is crucial to the viral life cycle. This project is the first to describe a gene, other than a named autophagy gene, to be required for adenovirus- mediated autophagy. It is also the first to examine autophagic cell death as a means to aid in viral-induced cell lysis.
Resumo:
A patient diagnosed with a glioma, generally, has an average of 14 months year to live after implementation of conventional therapies such as surgery, chemotherapy, and radiation. Glioblastomas are highly lethal because of their aggressive nature and resistance to conventional therapies and apoptosis. Thus other avenues of cell death urgently need to be explored. Autophagy, which is also known as programmed cell death type II, has recently been identified as an alternative mechanism to kill apoptosis- resistant cancer cells. Traditionally, researchers have studied how cells undergo autophagy during viral infection as an immune response mechanism, but recently researchers have discovered how viruses have evolved to manipulate autophagy for their benefit. Extensive studies of viral-induced autophagy provide a rationale to investigate other viruses, such as the adenovirus, which may be developed as part of a therapy against cancers resistant to apoptosis. Despite the present and relatively poor understanding of the mechanisms behind adenoviral-induced autophagy, adenovirus is a promising candidate, because of its ability to efficiently eradicate tumors. A better understanding of how the adenovirus induces autophagy will allow for the development of viruses with increased oncolytic potency. We hypothesized that adenovirus induces autophagy in order to aid in lysis. We found that replication, not infection, was required for adenovirus-mediated autophagy. Loss of function analysis of early genes revealed that, of the early genes tested, no single gene was sufficient to induce autophagy alone. Examination of cellular pathways for their role in autophagy during adenovirus infection revealed a function for the eIF2α pathway and more specifically the GCN2 kinase. Cells lacking GCN2 are more resistant to adenovirus-mediated autophagy in vitro; in vivo we also found these cells fail to undergo autophagy, but display more cell death. We believe that autophagy is a protective mechanism the cell employs during adenoviral infection, and in the in vivo environment, cells cannot recover from virus infection and are more susceptible to death. Congruently, infected cells deficient for autophagy through deletion of ATG5 are not able undergo productive cell lysis, providing evidence that the destruction of the cytoplasm and cell membrane through autophagy is crucial to the viral life cycle. This project is the first to describe a gene, other than a named autophagy gene, to be required for adenovirus- mediated autophagy. It is also the first to examine autophagic cell death as a means to aid in viral-induced cell lysis.
Resumo:
The proteasome degrades approximately 80% of intracellular proteins to maintain homeostasis. Proteasome inhibition is a validated therapeutic strategy, and currently, proteasome inhibitor bortezomib is FDA approved for the treatment of MM and MCL. Specific pathways affected by proteasome inhibition have been identified, but mechanisms of the anti-tumor effects of proteasome inhibition are not fully characterized and cancer cells display marked heterogeneity in terms of their sensitivity to proteasome inhibitor induced cell death. ^ The antitumor effects of proteasome inhibition involve suppression of tumor angiogenesis and vascular endothelial growth factor (VEGF) expression, but the mechanisms involved have not been clarified. In this dissertation I investigated the mechanisms underlying the effects of two proteasome inhibitors, bortezomib and NPI-0052, on VEGF expression in human prostate cancer cells. I found that proteasome inhibitors selectively downregulated hypoxia inducible factor 1alpha (HIF-1α) protein and its transcriptional activity to inhibit VEGF expression. Mechanistic studies demonstrated that proteasome inhibitors mediate the induction of the unfolded protein response (UPR) and that downregulation of HIF-1α is caused by eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and translation repression. Importantly, I showed that proteasome inhibitors activated the UPR in some cells but not in others. My observation may have implications for the design of combination regimens that are based on exploiting proteasome inhibitor-induced ER stress.^ Although proteasome inhibitors have shown modest activity on prostate cancer, there is general consensus that no single agent is likely to have significant activity in prostate cancer. In the second part of this dissertation I attempted to exploit the effects of proteasome inhibition on the UPR to design a combination therapy that would enhance cancer cell death. Autophagy is a lysosome dependent degradation pathway that functions to eliminate long-lived protein and subcellular structures. Targeting autophagy has been shown to inhibit tumors in preclinical studies. I found that inhibition of autophagy with chloroquine or 3-methyladenine enhanced proteasome inhibitor induced cell death and the effects were associated with increased intracellular stress as marked by aggresome formation. Multiple cancers appear to be resistant to proteasome inhibition treatment alone. The implications of synergy for the combined inhibition of autophagy and the proteasome would likely apply to other cancers aside from prostate cancer. ^
Resumo:
Plasma low-density lipoprotein (LDL) levels are positively correlated with the incidence of coronary artery disease. In the circulation, the plasma LDL clearance is mainly achieved by the uptake via LDL receptor (LDLR). Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a newly discovered gene, playing an important role in LDL metabolism. Gain-of-function mutations of PCSK9 lead to hypercholesterolemia and loss-of-function mutations of PCSK9 are associated with decrease of LDL cholesterol. The effects of PCSK9 on cholesterol levels are the consequence of a strong interaction between the catalytic domain of PCSK9 and epidermal growth factor-like repeat A (EGF-A) domain of LDLR on the cell surface of hepatocytes. This PCSK9/LDLR complex enters the cell via endocytosis, where both PCSK9 and LDLR are removed via the lysosome pathway, resulting in decreased levels of LDLR and accumulation of LDL in the plasma. However, whether this is the exclusive function of PCSK9 on LDL metabolism was challenged by us; we observed PCSK9 interacted with apolipoprotein B (apoB) and increased apoB production, irrespective of the LDLR. ApoB is the primary structure protein of LDL particle and it also serves as the ligand for the LDL receptor. There is ample evidence showing that the levels of apoB are a better indicator for heart disease than either total cholesterol or LDL cholesterol levels. We used a second-generation adenoviral vector to overexpress PCSK9 (Ad-PCSK9) in wild-type C57BL/6 and LDLR deficient mice (Ldlr-/- and Ldlr-/-Apobec1-/-). Our study revealed that overexpression of PCSK9 promoted the production and secretion of apoB in the form of very-low density lipoprotein (VLDL), which is the precursor of LDL, in the 3 mouse models studied (C57BL/6J, Ldlr-/-, and Ldlr-/-Apobec1-/-). The increased apoB production in mice was regulated at post-transcriptional levels, since there was no difference in apoB mRNA levels between mice treated with Ad-PCSK9 and control vector Ad-Null. By using pulse-chase experiment on primary hepatocytes, we showed that overexpression of PCSK9 increased the secretion of apoB, independent of LDLR. In the circulation, we showed that PCSK9 was associated with LDL particles. By using 3 different protein–protein interaction assays of co-immunoprecipitation, mammalian two-hybrid system, and in situ proximity ligation assay, we demonstrated a direct protein–protein interaction between PCSK9 and apoB. The impact of this interaction inhibited the physiological removal process of apoB via autophagosome/lysosome pathway in an LDLR-independent fashion, resulting in increased production and secretion of apoB-containing lipoproteins. The significance of this process was shown in the Pcsk9 knockout mice in the background of Ldlr-/-Apobec1-/- mice (triple knockout mice); in the absence of Pcsk9 (triple knockout mice) the levels of cholesterol, triacylglycerol, and apoB decreased significantly in comparison to that of Ldlr-/-Apobec1-/- mice. Taken together, our study demonstrated a direct intracellular interaction of PCSK9 with apoB, resulting in the inhibition of apoB degradation via the autophagosome/lysosome pathway independent of LDLR. This discovery provides a new concept of the importance of PCSK9 and suggests new approaches for the therapeutic intervention of hyperlipidemia.
Resumo:
Autophagy is an evolutionarily conserved process that functions to maintain homeostasis and provides energy during nutrient deprivation and environmental stresses for the survival of cells by delivering cytoplasmic contents to the lysosomes for recycling and energy generation. Dysregulation of this process has been linked to human diseases including immune disorders, neurodegenerative muscular diseases and cancer. Autophagy is a double edged sword in that it has both pro-survival and pro-death roles in cancer cells. Its cancer suppressive roles include the clearance of damaged organelles, which could otherwise lead to inflammation and therefore promote tumorigenesis. In its pro-survival role, autophagy allows cancer cells to overcome cytotoxic stresses generated the cancer environment or cancer treatments such as chemotherapy and evade cell death. A better understanding of how drugs that perturb autophagy affect cancer cell signaling is of critical importance toimprove the cancer treatment arsenal. In order to gain insights in the relationship between autophagy and drug treatments, we conducted a high-throughput drug screen to identify autophagy modulators. Our high-throughput screen utilized image based fluorescent microscopy for single cell analysis to identify chemical perturbants of the autophagic process. Phenothiazines emerged as the largest family of drugs that alter the autophagic process by increasing LC3-II punctae levels in different cancer cell lines. In addition, we observed multiple biological effects in cancer cells treated with phenothiazines. Those antitumorigenic effects include decreased cell migration, cell viability, and ATP production along with abortive autophagy. Our studies highlight the potential role of phenothiazines as agents for combinational therapy with other chemotherapeutic agents in the treatment of different cancers.
Resumo:
Mycobacterium tuberculosis (Mtb) replicates within the human macrophages and we investigated the activating effects of retinoic acid (RA) and vitamin D3 (VD) on macrophages in relation to the viability of Mtb. A combination of these vitamins (RAVD) enhanced the receptors on THP-1 macrophage (Mannose receptor and DC-SIGN) that increased mycobacterial uptake but inhibited thesubsequent intracellular growth of Mtb by inducing reactive oxygen species (ROS) and autophagy. RAVD also enhanced antigen presenting and homing receptors in THPs that suggested an activated phenotype for THPs following RAVD treatment. RAVD mediated activation was also associated with a marked phenotypic change in Mtb infected THPs that fused with adjacent cells to formmultinucleate giant cells (MNGCs). Typically MNGCs occurred over 30 days of in vitro culture and contained non-replicating persisting Mtb for as long as 60 days in culture. We propose that the RAVD mediated inhibition of replicating Mtb leading to persistence of non-replicating Mtb within THPs may provide a novel human macrophage model simulating formation of MNGCs in humanlungs.
Resumo:
Ataxia telangiectasia mutated (ATM) is a critical component of the cellular response to DNA damage, where it acts as a damage sensor, and signals to a large network of proteins which execute the important tasks involved in responding to the damage, namely inducing cell cycle checkpoints, inducing DNA repair, modulating transcriptional responses, and regulating cell death pathways if the damage cannot be repaired faithfully. We have now discovered that an additional novel component of this ATM-dependent damage response involves induction of autophagy in response to oxidative stress. In contrast to DNA damage-induced ATM activation however, oxidative stress induced ATM, occurs in the cytoplasm, and does not require nuclear-to-cytoplasmic shuttling of ATM. Using several cell culture systems including MCF7 breast carcinoma cells, SKOV3 ovarian cancer cells, and various lineages of mouse embryonic fibroblasts, we showed that once activated by reactive oxygen species (ROS), ATM signals to mTORC1 to induce autophagy via the LKB1-AMPK-TSC2 pathway. Targeting dysregulation of mTORC1 in Atm-deficient mice, which succumb to lymphomagenesis within 3-4 months of age with daily administration of rapamycin, could significantly extend survival and cause regression of tumors, suggesting that pharmacologically targeting this pathway has therapeutic implications in cancer. We also identified a second contrasting pathway for DNA damage-induced mTORC1 repression which does not require AMPK activation, but does require ATM and TSC2. Several potential mechanisms including mTOR localization and p53-mediated pathways were ruled out however we identified that TSC2 may be an additional cytoplasmic direct ATM substrate that is engaged in response to DNA damage specifically. Lastly, a study was performed to examine whether autophagy induced by ovarian cancer therapeutics (focusing on cisplatin, since paclitaxel does not induce autophagy in the SKOV3 cell line model we used) plays a role in resistance to therapy since autophagy can play both pro-survival mechanisms or be a mechanism of cell death. Using a genetic approach to knock-down Atg5 expression with shRNA in SKOV3 ovarian carcinoma cells, we compared the cytotoxicity of cisplatin in vector or Atg5 knock-down cells, and demonstrated that autophagy does not play any significant role in the response to cisplatin in this cell line.
Resumo:
OSW-1 is a natural compound found in the bulbs of Orninithogalum saudersiae, a member of the lily family. This compound exhibits potent antitumor activity in vitro with the IC50 values in the low nanomolar concentration range and demonstrating its ability to kill drug resistant cancer cells. In an effort to discover the unknown mechanism of action of this novel compound as a potential anticancer agent, the main objective of this research project was to test the cytotoxicity of OSW-1 against various cancer lines, and to elucidate the biochemical and molecular mechanism(s) responsible for the anticancer activity of OSW-1. My initial investigation revealed that OSW-1 is effective in killing various cancer cells including pancreatic cancer cells and primary leukemia cells resistant to standard chemotherapeutic agents, and that non-malignant cells were less sensitive to this compound. Further studies revealed that in leukemia cells, OSW-1 causes a significant increase in cytosolic calcium and activates rapid calcium-dependent apoptosis by the intrinsic pathway. Additionally, OSW-1 treatment leads to the degradation of the ER chaperone GRP78/BiP implicated in the survival of cancer cells. Meanwhile, it shows a reduced sensitivity in respiration-deficient sub-clones of leukemia cells which had higher basal levels of Ca2+. Mechanistically, it was further demonstrated that cytosolic Ca2+ elevations were observed together with Na+ decreases in the cytosol, suggesting OSW-1 caused the calcium overload through inhibition of the Na+/Ca 2+exchanger (NCX). Although similar calcium disturbances were observed in pancreatic cancer cells, mechanistic studies revealed that autophagy served as an initial pro-survival mechanism subsequent to OSW-1 treatment but extended autophagy caused inevitable cell death. Furthermore, combination of OSW-1 with autophagy inhibitors significantly enhances the cytotoxicity against pancreatic cancer cells. Taken together, this study revealed the novel mechanism of OSW-1 which is through inhibition of the Na+/Ca2+ exchanger and provides a basis for using this compound in combination with other agents for the treatment of pancreatic cancer which is resistant to available anticancer drugs. ^
Resumo:
Nucleoside analogs are a class of chemotherapeutic agents with tremendous utility in treating viral infections and cancers. Traditional nucleoside analogs are DNA-directed. However, there is a new group of nucleoside analogs that induce cell death by a direct effect on RNA synthesis. The adenosine analog, 8-chloroadenosine, is incorporated into RNA and is currently in clinical trials. Another congener, 8-amino-adenosine has demonstrated toxicity in multiple myeloma cell lines. Like other nucleoside analogs, 8-amino-adenosine must be metabolized to its triphosphate to elicit a cytotoxic effect. Furthermore, 8-amino-adenosine causes a decline of the intracellular ATP pool and inhibits mRNA poly(A) adenylation. ^ Because of the previously known adenosine analog mechanism as well as the scope of the RNA directed nucleoside analog field, I hypothesized there are multiple mechanisms of transcription inhibition mediating 8-amino-adenosine-induced cell death. Prior to investigating these mechanisms, cell death by 8-amino-adenosine was characterized. 8-Amino-adenosine activates PARP cleavage and induces the caspase cascade. 8-Amino-adenosine increases Annexin V binding and the mitochondrial membrane permeability in wild-type MEF cells. In BAX/BAK deficient MEF cells, 8-amino-adenosine decreases the mitochondrial membrane permeability and induces autophagy. ^ Once cell death was characterized, the mechanisms of 8-amino-adenosine transcription inhibition were assessed. It was established that 8-aminoadenosine treatment causes 8-amino-ATP accumulation and decreases the intracellular ATP concentration, resulting in RNA synthesis inhibition. Several other mechanisms are identified. First, a relationship between ATP decline by 8-amino-adenosine or other known ATP synthesis inhibitors and RNA synthesis is established indicating that effects on cellular bioenergy, regardless of the mechanism of ATP decline, can decrease RNA synthesis. Second, 8-aminoadenosine treatment decreases the phosphorylation of serine residues on the RNA polymerase II C-terminal domain which regulates transcription initiation and elongation. Third, evidence is provided to demonstrate 8-amino-ATP is a substrate for RNA synthesis. Fourth, 8-amino-ATP is incorporated at the 3'-terminal position leading to chain termination. Finally, in vitro transcription assays show that 8-amino-ATP may compete with ATP to decrease de novo mRNA synthesis. Overall, this work demonstrates 8-amino-adenosine is a cytotoxic nucleoside analog that functions to inhibit RNA transcription through multiple mechanisms. ^
Resumo:
Mammalian target of rapamycin (mTOR) plays an important role in regulating various cellular functions, and the tuberous sclerosis 1 (TSC1)/TSC2 complex serves as a major repressor of the mTOR pathway. Here we demonstrated that arrest-defective protein 1 (ARD1) physically interacts with, acetylates, and stabilizes TSC2, thereby reducing mTOR activity. The inhibition of mTOR by ARD1 suppresses cell proliferation and increases autophagy, which further impairs tumorigenicity. Correlation between the levels of ARD1 and TSC2 was found in multiple tumor types, suggesting the physiological importance of ARD1 in stabilizing TSC2. Moreover, evaluation of loss of heterozygosity (LOH) at Xq28 revealed allelic loss in 31% of tested breast cancer cell lines and tumor samples. Together, our findings suggest that ARD1 functions as a negative regulator of the mTOR pathway and that dysregulation of the ARD1/TSC2/mTOR axis may contribute to cancer development. To further explore the signaling pathway of ARD1, we provided evidence showing the phosphorylation of ARD1 by IKKβ, which mediated the destabilization of ARD1. Future work may be needed to study the biological effect of this post-translational modification. ^
Resumo:
Tuberous sclerosis complex (TSC) is a dominant tumor suppressor disorder caused by mutations in either TSC1 or TSC2. The proteins of these genes form a complex to inhibit the mammalian target of rapamycin complex 1 (mTORC1), which controls protein translation and cell growth. TSC causes substantial neuropathology, often leading to autism spectrum disorders (ASDs) in up to 60% of patients. The anatomic and neurophysiologic links between these two disorders are not well understood. However, both disorders share cerebellar abnormalities. Therefore, we have characterized a novel mouse model in which the Tsc2 gene was selectively deleted from cerebellar Purkinje cells (Tsc2f/-;Cre). These mice exhibit progressive Purkinje cell degeneration. Since loss of Purkinje cells is a well-reported postmortem finding in patients with ASD, we conducted a series of behavior tests to assess if Tsc2f/-;Cre mice displayed autistic-like deficits. Using the three chambered social choice assay, we found that Tsc2f/-;Cre mice showed behavioral deficits, exhibiting no preference between a stranger mouse and an inanimate object, or between a novel and a familiar mouse. Tsc2f/-;Cre mice also demonstrated increased repetitive behavior as assessed with marble burying activity. Altogether, these results demonstrate that loss of Tsc2 in Purkinje cells in a haploinsufficient background lead to behavioral deficits that are characteristic of human autism. Therefore, Purkinje cells loss and/or dysfunction may be an important link between TSC and ASD. Additionally, we have examined some of the cellular mechanisms resulting from mutations in Tsc2 leading to Purkinje cell death. Loss of Tsc2 led to upregulation of mTORC1 and increased cell size. As a consequence of increased protein synthesis, several cellular stress pathways were upregulated. Principally, these included altered calcium signaling, oxidative stress, and ER stress. Likely as a consequence of ER stress, there was also upregulation of ubiquitin and autophagy. Excitingly, treatment with an mTORC1 inhibitor, rapamycin attenuated mTORC1 activity and prevented Purkinje cell death by reducing of calcium signaling, the ER stress response, and ubiquitin. Remarkably, rapamycin treatment also reversed the social behavior deficits, thus providing a promising potential therapy for TSC-associated ASD.
Resumo:
Targeting Histone deacetylases (HDAC) for the treatment of genetically complex soft tissue sarcoma Histone deactylase inhibitors (HDACi) are a new class of anticancer therapeutics; however, little is known about HDACi or the individual contribution of HDAC isoform activity in soft tissue sarcoma (STS). We investigated the potential efficacy of HDACi as monotherapy and in combination with chemotherapy in a panel of genetically complex STS. We found that HDACi combined with chemotherapy significantly induced anti-STS effects in vitro and in vivo. We then focused our study of HDACi in malignant peripheral nerve sheath tumor (MPNST), a subtype of highly aggressive, therapeutically resistant, and commonly fatal malignancies that occur in patients with neurofibromatosis type-1 (NF1) or sporadically. The therapeutic efficacy of HDACi was investigated in a panel of NF1-associated and sporadic MPNST cell lines. Our results demonstrate the NF1-assocaited cohort to be highly sensitive to HDACi while sporadic cell lines exhibited resistance. HDACi-induced productive autophagy was found to be a mode of resistance and inhibiting HDACi-induced autophagy significantly induced pro-apoptotic effects of HDACi in vitro and in vivo. HDACs are not a single enzyme consisting of 11 currently known isoforms. HDACis used in these studies inhibit a variety of these isoforms, namely class I HDACs which include HDAC1, 2, 3, and 8. Recently, HDAC8-specific inhibitors (HDAC8i) have been created and tested in various cancer cell lines. Lastly, the potential therapeutic efficacy of HDAC8i was investigated in human (NF1-associated and sporadic) and NF1-associated murine-derived MPNST. HDAC8i abrogated cell growth in human and murine-derived MPNST cells. Similar to the pattern noticed with pan-HDACis NF1-associated cells, especially murine-derived, were more sensitive to HDAC8i compared to human sporadic MPNST cell lines. S-phase arrest was observed in human and murine MPNST cells, independent of p53 mutational and NF1 status. HDAC8i induced apoptosis is all cell lines tested, with a more pronounced effects in human and murine-derived NF1-associated cells. Most importantly, HDAC8i abrogated murine-derived MPNST xenograft growth in vivo. Taken together, these findings support the evaluation of pan-HDACi and isoform-specific inhibitors as a novel therapy to treat MPNST, including in combination with autophagy blocking combination regimens in particular for patients with sporadic MPNST.