13 resultados para ASSR (auditory steady-state response)
em DigitalCommons@The Texas Medical Center
Resumo:
cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.
Resumo:
Diseases are believed to arise from dysregulation of biological systems (pathways) perturbed by environmental triggers. Biological systems as a whole are not just the sum of their components, rather ever-changing, complex and dynamic systems over time in response to internal and external perturbation. In the past, biologists have mainly focused on studying either functions of isolated genes or steady-states of small biological pathways. However, it is systems dynamics that play an essential role in giving rise to cellular function/dysfunction which cause diseases, such as growth, differentiation, division and apoptosis. Biological phenomena of the entire organism are not only determined by steady-state characteristics of the biological systems, but also by intrinsic dynamic properties of biological systems, including stability, transient-response, and controllability, which determine how the systems maintain their functions and performance under a broad range of random internal and external perturbations. As a proof of principle, we examine signal transduction pathways and genetic regulatory pathways as biological systems. We employ widely used state-space equations in systems science to model biological systems, and use expectation-maximization (EM) algorithms and Kalman filter to estimate the parameters in the models. We apply the developed state-space models to human fibroblasts obtained from the autoimmune fibrosing disease, scleroderma, and then perform dynamic analysis of partial TGF-beta pathway in both normal and scleroderma fibroblasts stimulated by silica. We find that TGF-beta pathway under perturbation of silica shows significant differences in dynamic properties between normal and scleroderma fibroblasts. Our findings may open a new avenue in exploring the functions of cells and mechanism operative in disease development.
Resumo:
Diseases are believed to arise from dysregulation of biological systems (pathways) perturbed by environmental triggers. Biological systems as a whole are not just the sum of their components, rather ever-changing, complex and dynamic systems over time in response to internal and external perturbation. In the past, biologists have mainly focused on studying either functions of isolated genes or steady-states of small biological pathways. However, it is systems dynamics that play an essential role in giving rise to cellular function/dysfunction which cause diseases, such as growth, differentiation, division and apoptosis. Biological phenomena of the entire organism are not only determined by steady-state characteristics of the biological systems, but also by intrinsic dynamic properties of biological systems, including stability, transient-response, and controllability, which determine how the systems maintain their functions and performance under a broad range of random internal and external perturbations. As a proof of principle, we examine signal transduction pathways and genetic regulatory pathways as biological systems. We employ widely used state-space equations in systems science to model biological systems, and use expectation-maximization (EM) algorithms and Kalman filter to estimate the parameters in the models. We apply the developed state-space models to human fibroblasts obtained from the autoimmune fibrosing disease, scleroderma, and then perform dynamic analysis of partial TGF-beta pathway in both normal and scleroderma fibroblasts stimulated by silica. We find that TGF-beta pathway under perturbation of silica shows significant differences in dynamic properties between normal and scleroderma fibroblasts. Our findings may open a new avenue in exploring the functions of cells and mechanism operative in disease development.
Resumo:
cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.
Resumo:
After an inflammatory stimulus, lymphocyte migration into draining lymph nodes increases dramatically to facilitate the encounter of naive T cells with Ag-loaded dendritic cells. In this study, we show that CD73 (ecto-5'-nucleotidase) plays an important role in regulating this process. CD73 produces adenosine from AMP and is expressed on high endothelial venules (HEV) and subsets of lymphocytes. Cd73(-/-) mice have normal sized lymphoid organs in the steady state, but approximately 1.5-fold larger draining lymph nodes and 2.5-fold increased rates of L-selectin-dependent lymphocyte migration from the blood through HEV compared with wild-type mice 24 h after LPS administration. Migration rates of cd73(+/+) and cd73(-/-) lymphocytes into lymph nodes of wild-type mice are equal, suggesting that it is CD73 on HEV that regulates lymphocyte migration into draining lymph nodes. The A(2B) receptor is a likely target of CD73-generated adenosine, because it is the only adenosine receptor expressed on the HEV-like cell line KOP2.16 and it is up-regulated by TNF-alpha. Furthermore, increased lymphocyte migration into draining lymph nodes of cd73(-/-) mice is largely normalized by pretreatment with the selective A(2B) receptor agonist BAY 60-6583. Adenosine receptor signaling to restrict lymphocyte migration across HEV may be an important mechanism to control the magnitude of an inflammatory response.
Resumo:
Although gastrointestinal stromal tumor (GIST) is effectively treated with imatinib, there are a number of clinical challenges in the optimal treatment of these patients. The plasma steady-state trough level of imatinib has been proposed to correlate with clinical outcome. Plasma imatinib level may be affected by a number of patient characteristics. Additionally, the ideal plasma trough concentration of imatinib is likely to vary based on the KIT genotype (genotype determines imatinib binding affinity) of the individual patient. Patients’ genotype or plasma imatinib level may influence the type and duration of response that is appreciable by clinical evaluation. The objectives of this study were to determine effects of genotype on the type of response appreciable by current imaging criteria, to determine the distribution of plasma imatinib levels in patients with GIST, to determine factors that correlate with plasma imatinib level, to determine the incremental effects of imatinib dose escalation; and to explore the median plasma levels and outcomes of patients with various KIT mutations. We therefore obtained KIT mutation information and analyzed CT response for size and density measurement of GISTs at baseline and within the first four moths of imatinib treatment. In 126 patients with metastatic/unresectable disease, the KIT genotype of patients’ tumor was significantly associated with unique response characteristics measurable by CT. Furthermore, hepatic and peritoneal metastases differed in their response characteristics. A subgroup of patients with KIT exon 9 mutation, who received higher doses of imatinib and experienced higher trough imatinib levels, experienced improved progression-free survival similar to that of KIT exon 11 patients. Therefore, we have found that imatinib plasma levels were higher in patients with elevated Aspartate amino transferase, were women, were older, or were being treated concomitantly with CYP450 substrate drugs. As expected, CYP450 inducers correlated with a lower plasma imatinib levels in GIST patients. Renal metabolism of imatinib accounts for <10%, so it was not included in the analysis but may affect covariates. Interestingly, there was a trend for low imatinib levels and inferior progression-free survival in patients who had undergone complete gastrectomy. Patients with KIT exon 9 mutation in our cohort received higher imatinib doses, experienced higher trough imatinib levels, and experienced a PFS similar to that of KIT exon 11 patients. In conclusion, imatinib plasma levels are influenced by a number of patient characteristics. The optimal imatinib plasma level for individual patients is not known but is an area of intense investigation. Our study confirms patients with KIT exon 9 mutations benefit from high-dose imatinib and higher trough imatinib levels.
Resumo:
Bone remodeling is controlled by the osteoclast, which resorbs bone, and the osteoblast, which synthesizes and secretes proteins that are eventually mineralized into bone. Ca$\sp{2+}$ homeostasis and signaling contribute to the function of nearly all cell types, and understanding both in the osteoblast is of importance given its secretory properties and interaction with osteoclasts. This study was undertaken to identify and investigate the physiology of the Ca$\sp{2+}$ signaling mechanisms present in osteoblasts. The Ca$\sp{2+}$ pumps, stores and channels present in osteoblasts were studied. RT-PCR cloning revealed that osteoblast-like cells express PMCA1b, an alternatively spliced transcript of the plasma membrane Ca$\sp{2+}$-ATPase. The PMCA1b isoform contains a consensus phosphorylation site for cAMP-dependent protein kinase A and a modified calmodulin binding domain. The regulation of osteoblast function by agents that act via cAMP-mediated pathways may involve alterations in the activity of the plasma membrane Ca$\sp{2+}$-ATPase.^ Calcium release from intracellular stores is a signaling mechanism used universally by cells responding to hormones and growth factors, and the compartmentalization and regulated release of calcium is cell-type specific. Fura-2 was employed to monitor intracellular Ca$\sp{2+}$. Thapsigargin and 2,5,-di-(tert-butyl)-1,4-benzohydroquinone (tBuHQ), two inhibitors of endoplasmic reticulum Ca$\sp{2+}$-ATPase activity, both emptied a single intracellular calcium pool which was released in response to either ATP or thrombin, identifying it as the inositol 1,4,5-trisphosphate-sensitive calcium store. The Ca$\sp{2+}$ storage system present in osteoblasts is typical of a non-excitable cell type, despite these cells sharing characteristics of excitable cells such as voltage-sensitive Ca$\sp{2+}$ channels (VSCCs).^ VSCCs are important cell surface regulators of membrane permeability to Ca$\sp{2+}$. In non-excitable cells VSCCs act as cellular transducers of stimulus-secretion coupling, activators of intracellular proteins, and in control of cell growth and differentiation. Functional VSCCs have been shown to exist in osteoblasts, however, no molecular cloning has been reported. To obtain information concerning the molecular identity of the osteoblastic VSCC, we used an RT-PCR regional amplification approach. Sequencing of the products indicated that osteoblasts express at least two isoforms of the L-type VSCC, $\alpha 1\sb{\rm C-a}$ and the $\alpha 1\sb{\rm C-d}$, which share regions of identity to the $\alpha \sb{\rm 1C}$ isoform first identified in cardiac myocytes. The ability of $1,25(\rm OH)\sb2D\sb3$ and structural analogs to modulate expression of Ca$\sp{2+}$ channel mRNA was then investigated. Cells were cultured for 48 hr in the presence of $1,25(\rm OH)\sb2D\sb3$ or vitamin D analogs, and the levels of mRNA encoding VSCC $\alpha \sb{\rm 1C}$ were quantitated using a competitive RT-PCR assay. It was found that $1,25(\rm OH)\sb2D\sb3$ and analog BT reduced steady state levels of $\alpha \sb{\rm 1C}$ mRNA. Conversely, analog AT did not alter steady state levels of Ca$\sp{2+}$ channel mRNA. Since it has been shown previously that analog BT, but not AT, binds and activates the nuclear vitamin D receptor, these findings suggest that the down regulation of channel mRNA involves the nuclear receptor for $1,25(\rm OH)\sb2D\sb3$. ^
Resumo:
Bacillus anthracis plasmid pXO1 carries genes for three anthrax toxin proteins, pag (protective antigen), cya (edema factor), and lef (lethal factor). Expression of the toxin genes is enhanced by two signals: CO$\sb2$/bicarbonate and temperature. The CO$\sb2$/bicarbonate effect requires the presence of pXO1. I hypothesized that pXO1 harbors a trans-acting regulatory gene(s) required for CO$\sb2$/bicarbonate-enhanced expression of the toxin genes. Characterization of such a gene(s) will lead to increased understanding of the mechanisms by which B. anthracis senses and responds to host environments.^ A regulatory gene (atxA) on pXO1 was identified. Transcription of all three toxin genes is decreased in an atxA-null mutant. There are two transcriptional start sites for pag. Transcription from the major site, P1, is enhanced in elevated CO$\sb2$. Only P1 transcripts are significantly decreased in the atxA mutant. Deletion analysis of the pag upstream region indicates that the 111-bp region upstream of the P1 site is sufficient for atxA-mediated increase of this transcript. The cya and lef genes each have one apparent transcriptional start site. The cya and lef transcripts are significantly decreased in the atxA mutant. The atxA mutant is avirulent in mice. The antibody response to all three toxin proteins is significantly decreased in atxA mutant-infected mice. These data suggest that the atxA gene product activates expression of the toxin genes and is essential for virulence.^ Since expression of the toxin genes is dependent on atxA, whether increased toxin gene expression in response to CO$\sb2$/bicarbonate and temperature is associated with increased atxA expression was investigated. I monitored steady state levels of atxA mRNA and AtxA protein in different growth conditions. The results indicate that expression of atxA is not influenced by CO$\sb2$/bicarbonate. Steady state levels of atxA mRNA and AtxA protein are higher at 37$\sp\circ$C than 28$\sp\circ$C. However, increased pag expression at high temperature can not be attributed directly to increased atxA expression.^ There is evidence that an additional factor(s) may be involved in regulation of pag. Expression of pag in strains overproducing AtxA is significantly decreased compared to the wildtype strain. A specific interaction of tagged-AtxA with the pag upstream DNA has not been demonstrated. Furthermore, four proteins in B. anthracis extract can be co-immunoprecipitated with tagged-AtxA. Amino-terminal sequence of one protein has been determined and found highly homologous to chaperonins of GroEL family. Studies are under way to determine if this GroEL-like protein interactions with AtxA and plays any role in atxA-mediated activation of toxin genes. ^
Resumo:
Expression of the structural genes for the anthrax toxin proteins is coordinately controlled by host-related signals such as elevated CO2 , and the trans-acting positive regulator, AtxA. No specific binding of AtxA to the toxin gene promoters has been demonstrated and no sequence-based similarities are apparent in the promoter regions of toxin genes. We hypothesized that the toxin genes possess common structural features that are required for positive regulation. To test this hypothesis, I performed an extensive characterization of the toxin gene promoters. I determined the minimal sequences required for atxA-mediated toxin gene expression and compared these sequences for structural similarities. In silico modeling and in vitro experiments indicated significant curvature within these regions. Random mutagenesis revealed that point mutations associated with reduced transcriptional activity, mostly mapped to areas of high curvature. This work enabled the identification of two potential cis-acting elements implicated in AtxA-mediated regulation of the toxin genes. In addition to the growth condition requirements and AtxA, toxin gene expression is under growth phase regulation. The transition state regulator AbrB represses atxA expression to influence toxin synthesis. Here I report that toxin gene expression also requires sigH, a gene encoding the RNA polymerase sigma factor associated with development in B. subtilis. In the well-studied B. subtilis system, σH is part of a feedback control pathway that involves AbrB and the major response regulator of sporulation initiation, Spo0A. My data indicate that in B. anthracis, regulatory relationships exist between these developmental regulators and atxA . Interestingly, during growth in toxin-inducing conditions, sigH and abrB expression deviates from that described for B. subtilis, affecting expression of the atxA gene. These findings, combined with previous observations, suggest that the steady state level of atxA expression is critical for optimal toxin gene transcription. I propose a model whereby, under toxin-inducing conditions, control of toxin gene expression is fine-tuned by the independent effects of the developmental regulators on the expression of atxA . The growth condition-dependent changes in expression of these regulators may be crucial for the correct timing and uninterrupted expression of the toxin genes during infection. ^
Resumo:
This dissertation examines the biological functions and the regulation of expression of DNA ligase I by studying its expression under different conditions.^ The gene expression of DNA ligase I was induced two- to four-fold in S-phase lymphoblastoid cells but was decreased to 15% of control after administration of a DNA damaging agent, 4-nitroquinoline-1-oxide. When cells were induced into differentiation, the expression level of DNA ligase I was decreased to less than 15% of that of the control cells. When the gene of DNA ligase I was examined for tissue specific expression in adult rats, high levels of DNA ligase I mRNA were observed in testis (8-fold), intermediate levels in ovary and brain (4-fold), and low levels were found in intestine, spleen, and liver (1- to 2-fold).^ In confluent cells of normal skin fibroblasts, UV irradiation induced the gene expression of DNA ligase I at 24 and 48 h. The induction of DNA ligase I gene expression requires active p53 protein. Introducing a vector containing the wild type p53 protein in the cells caused an induction of the DNA ligase I protein 24 h after the treatment.^ Our results indicate that, in addition to the regulation by phosphorylation/dephosphorylation, cellular DNA ligase I activity can be regulated at the gene transcription level, and the p53 tumor suppresser is one of the transcription factors for the DNA ligase I gene. Also, our results suggest that DNA ligase I is involved in DNA repair as well as in DNA replication.^ Also, as an early attempt to clone the human homolog of the yeast CDC9 gene which has been shown to be involved in DNA replication, DNA repair, and DNA recombination, we have identified a human gene with mRNA of 1.7 kb. This dissertation studies the gene regulation and the possible biological functions of this new human gene by examining its expression at different stages of the cell cycle, during cell differentiation, and in cellular response to DNA damage.^ The new gene that we recently identified from human cells is highly expressed in brain and reproductive organs (BRE). This BRE gene encodes an mRNA of 1.7-1.9 kb, with an open reading frame of 1,149 bp, and gives rise to a deduced polypeptide of 383 amino acid residues. No extensive homology was found between BRE and sequences from the EMBL-Gene Banks. BRE showed tissue-specific expression in adult rats. The steady state mRNA levels were high in testis (5-6 fold), ovary and brain (3-4 fold) compared to the spleen level, but low in intestine and liver (1-2 fold). The expression of this gene is responsive to DNA damage and/or retinoic acid (RA) treatment. Treatment of fibroblast cells with UV irradiation and 4-nitroquinoline-1-oxide caused more than 90% and 50% decreases in BRE mRNA, respectively. Similar decreases in BRE expression were observed after treatment of the brain glioma cell line U-251 and the promyelocytic cell line HL-60 with retinoic acid. (Abstract shortened by UMI). ^
Resumo:
Despite the popularity of the positron emitting glucose analog, ($\sp{18}$F) -2-deoxy-2-fluoro-D-glucose (2FDG), for the noninvasive "metabolic imaging" of organs with positron emission tomography (PET), the physiological basis for the tracer has not been tested, and the potential of 2FDG for the rapid kinetic analysis of altered glucose metabolism in the intact heart has not been fully exploited. We, therefore, developed a quantitative method to characterize metabolic changes of myocardial glucose metabolism noninvasively and with high temporal resolution.^ The first objective of the work was to provide direct evidence that the initial steps in the metabolism of 2FDG are the same as for glucose and that 2FDG is retained by the tissue in proportion to the rate of glucose utilization. The second objective was to characterize the kinetic changes in myocardial glucose transport and phosphorylation in response to changes in work load, competing substrates, acute ischemia and reperfusion, and the addition of insulin. To assess changes in myocardial glucose metabolism isolated working rat hearts were perfused with glucose and 2FDG. Tissue uptake of 2FDG and the input function were measured on-line by external detection. The steady state rate of 2FDG phosphorylation was determined by graphical analysis of 2FDG time-activity curves.^ The rate of 2FDG uptake was linear with time and the tracer was retained in its phosphorylated form. Tissue accumulation of 2FDG decreased within seconds with a reduction in work load, in the presence of competing substrates, and during reperfusion after global ischemia. Thus, most interventions known to alter glucose metabolism induced rapid parallel changes in 2FDG uptake. By contrast, insulin caused a significant increase in 2FDG accumulation only in hearts from fasted animals when perfused at a sub-physiological work load. The mechanism for this phenomenon is not known but may be related to the existence of two different glucose transporter systems and/or glycogen metabolism in the myocardial cell.^ It is concluded that (1) 2FDG traces glucose uptake and phosphorylation in the isolated working rat heart; and (2) early and transient kinetic changes in glucose metabolism can be monitored with high temporal resolution with 2FDG and a simple positron coincidence counting system. The new method has revealed transients of myocardial glucose metabolism, which would have remained unnoticed with conventional methods. These transients are not only important for the interpretation of glucose metabolic PET scans, but also provide insights into mechanisms of glucose transport and phosphorylation in heart muscle. ^
Resumo:
The hypermodified, hydrophobic 2-methylthio-N$\sp6$-(dimethylallyl)-adenosine (ms${2{\cdot}6}\atop1$A) residue occurs $3\sp\prime$ to the anticodon in tRNA species that read codons beginning with U. The first step (i$\sp6$A37 formation) of this modification is catalyzed by dimethylallyl diphosphate:tRNA dimethyallyltransferase (EC 2.5.1.8), which is the product of the miaA gene. Subsequent steps were proposed to be catalyzed by MiaB and MiaC enzymes to complete the ms${2{\cdot}6}\atop1$A37 modification. The study of functions of the ms${2{\cdot}6}\atop1$A37 is very important because this modified base is one of the best candidates for a role in global control in response to environmental stress. This dissertation describes the further delineation of functions of the ms${2{\cdot}6}\atop1$A37 modification in E. coli K-12 cells. This work provides significant information on functions of tRNA modifications in E. coli cells to adapt to stressful environmental conditions. Three hypotheses were tested in this work.^ The first hypothesis tested was that non-optimal translation processes cause increased spontaneous mutagenesis by the induction of SOS response in starving cells. To test this hypothesis, I measured spontaneous mutation rates of wild type cells and various mutant strains which are defective in tRNA modification, SOS response, or oxidative damage repair. I found that the miaA mutation acts as a mutator that increased Lac$\sp+$ reversion rates and Trp$\sp+$ reversion frequencies of the wild-type cells in starving conditions. However, the lexA3(Ind)(which abolishes the induction of SOS response) mutation abolished the mutator phenotype of the miaA mutant. The recA430 mutation, not other identified SOS genes, decreased the Lac$\sp+$ reversion to a less extent than that of the lexA3(Ind) mutation. These results suggest that RecA together with another unidentified SOS gene product are responsible for the process.^ The second hypothesis tested was that MiaA protein binds to full-length tRNA$\sp{\rm Phe}$ molecules in form of a protein dimer. To test this hypothesis, three versions of the MiaA protein and seven species of tRNA substrates were purified. Binding studies by gel mobility shift assays, filter binding assays and gel filtration shift assays support the hypothesis that MiaA protein binds to full-length tRNA$\sp{\rm Phe}$ as a protein dimer but as a monomer to the anticodon stem-and-loop. These results were further supported by using steady state enzyme kinetic studies.^ The third hypothesis tested in this work was that the miaB gene in E. coli exists and is clonable. The miaB::Tn10dCm insertion mutation of Salmonella typhimurium was transduced to E. coli K-12 cells by using P$\sb1$ and P$\sb{22}$ bacteriophages. The insertion was confirmed by HPLC analyses of nucleotide profiles of miaB mutants of E. coli. The insertion mutation was cloned and DNA sequences adjacent to the transposon were sequenced. These DNA sequences were 86% identical to the f474 gene at 14.97 min chromosome of E. coli. The f474 gene was then cloned by PCR from the wild-type chromosome of E. coli. The recombinant plasmid complemented the mutant phenotype of the miaB mutant of E. coli. These results support the hypothesis that the miaB gene of E. coli exists and is clonable. In summary, functions of the ms${2{\cdot}6}\atop1$A37 modification in E. coli cells are further delineated in this work in perspectives of adaptation to stressful environmental conditions and protein:tRNA interaction. (Abstract shortened by UMI.) ^
Resumo:
The Bacillus anthracis toxin genes, cya, lef , and pag, can be viewed as a regulon, in which transcription of all three genes is activated in trans by the same regulatory gene, atxA, in response to the same signal, CO2. I determined that several phenotypes are associated with the atxA gene. In addition to being toxin-deficient, an atxA -null mutant grows poorly on minimal media and sporulates early compared to the parent strain. Furthermore, an atxA-null mutant has an altered 2-D gel protein profile. I used a genetic approach to find additional atxA-regulated genes. Random transcriptional lacZ fusions were generated in B. anthracis using transposon Tn 917-LTV3. Transposon-insertion libraries were screened for mutants expressing increased β-galactosidase activity in 5% CO2. Introduction of an atxA-null mutation in these mutants revealed that 79% of the CO2-regulated fusions were also atxA-dependent. DNA sequence analysis of transposon insertion sites in mutants carrying CO 2/atxA-regulated fusions revealed ten mutants harboring transposon insertions in loci distinct from the toxin genes. The majority of the tcr (toxin co-regulated) loci mapped within the pXO1 pathogenicity island. These results indicate a clear association of atxA with CO2-enhanced gene expression in B. anthracis and provide evidence that atxA regulates genes other than the structural genes for the anthrax toxin proteins. ^ Characterization of one tcr locus revealed a new regulatory gene, pagR. The pagR gene (300 nt) is located downstream of pag. pagR is cotranscribed with pag and is responsible for autogenous control of the operon. pagR also represses expression of cya and lef. Repression of toxin gene expression by pagR may be mediated by atxA. The steady state level of atxA mRNA is increased in a pagR mutant. Recombinant PagR protein purified from Escherichia coli did not specifically bind the promoter regions of pagA or atxA. An unidentified factor in B. anthracis crude extracts, however, was able to bind the atxA promoter in the absence of PagR or AtxA. These investigations increase our knowledge of virulence regulation in B. anthracis and ultimately will lead to a better understanding of anthrax disease. ^