1 resultado para APORPHINOID ALKALOIDS

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antibodies which bind bioactive ligands can serve as a template for the generation of a second antibody which may react with the physiological receptor. This phenomenon of molecular mimicry by antibodies has been described in a variety of systems. In order to understand the chemical and molecular mechanisms involved in these interactions, monoclonal antibodies directed against two pharmacologically active alkaloids, morphine and nicotine, were carefully studied using experimental and theoretical molecular modeling techniques. The molecular characterization of these antibodies involved binding studies with ligand analogs and determination of the variable region amino acid sequence. A three-dimensional model of the anti-morphine binding site was constructed using computational and graphics display techniques. The antibody response in BALB/c mice to morphine appears relatively restricted, in that all of the antibodies examined in this study contained a $\lambda$ light chain, which is normally found in only 5% of mouse immunoglobulins. This study represents the first use of theoretical and experimental modeling techniques to describe the antigen binding site of a mouse Fv region containing a $\lambda$ light chain. The binding site model indicates that a charged glutamic acid residue and aromatic side chains are key features in ionic and hydrophobic interactions with the ligand morphine. A glutamic acid residue is found in the identical position in the anti-nicotine antibody and may play a role in binding nicotine. ^