5 resultados para ANTICANCER AGENT

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DNA breakage effect of the anticancer agent 3,6-diaziridinyl-2,5-bis(carboethoxyamino)-1,4-benzoquinone (AZQ, NSC-182986) on bacteriophage PM2 DNA was investigated using agarose gel electrophoresis. AZQ caused both single-stranded and double-stranded breaks after reduction with NaBH(,4), but it was not active in the native state. At 120 (mu)M, it degraded 50% of the closed circular form I DNA into 40% form II DNA (single-stranded break) and 10% form III DNA (double-stranded break). It produced a dose-response breakage between 1 (mu)M and 320 (mu)M. The DNA breakage exhibited a marked pH dependency. At 320 (mu)M, AZQ degraded 80% and 60% of form I DNA at pH 4 and 10 respectively, but none between pH 6 to 8. The DNA breakage at physiologic pH was greatly enhanced when 10 (mu)M cupric sulfate was included in the incubation mixture. The DNA strand scission was inhibited by catalase, glutathione, KI, histidine, Tiron, and DABCO. These results suggest that the DNA breakage may be caused by active oxygen metabolites including hydroxyl free radical. The bifunctional cross-linking activity of reduced AZQ on isolated calf thymus DNA was investigated by ethidium fluorescence assay. The cross-linking activity exhibited a similar pH dependency; highest in acidic and alkaline pH, inactive under neutral conditions. Using the alkaline elution method, we found that AZQ induced DNA single-stranded breaks in Chinese hamster ovary cells treated with 50 (mu)M of AZQ for 2 hr. The single-stranded break frequencies in rad equivalents were 17 with 50 (mu)M and 140 with 100 (mu)M of AZQ. In comparison, DNA cross-links appeared in cells treated with only 1 to 25 (mu)M of AZQ for 2 hr. The cross-linking frequencies in rad equivalents were 39 and 90 for 1 and 5 (mu)M of AZQ, respectively. Both DNA-DNA and DNa-protein cross-links were induced by AZQ in CHO cells as revealed by the proteinas K digestion assay. DNA cross-links increased within the first 4 hr of incubation in drug-free medium and slightly decreased by 12 hr, and most of the cross-links disappeared after cells were allowed to recovered for 24 hr.^ By electrochemical analysis, we found that AZQ was more readily reduced at acidic pH. However, incubation of AZQ with NaBH(,4) at pH 7.8 or 10, but not at 4, produced superoxide anion. The opening of the aziridinyl rings of AZQ at pH 4 was faster in the presence of NaBH(,4) than in its absence; no ring-opening was detected at pH 7.8 regardless of the inclusion of NaBH(,4). . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OSW-1 is a natural compound found in the bulbs of Orninithogalum saudersiae, a member of the lily family. This compound exhibits potent antitumor activity in vitro with the IC50 values in the low nanomolar concentration range and demonstrating its ability to kill drug resistant cancer cells. In an effort to discover the unknown mechanism of action of this novel compound as a potential anticancer agent, the main objective of this research project was to test the cytotoxicity of OSW-1 against various cancer lines, and to elucidate the biochemical and molecular mechanism(s) responsible for the anticancer activity of OSW-1. My initial investigation revealed that OSW-1 is effective in killing various cancer cells including pancreatic cancer cells and primary leukemia cells resistant to standard chemotherapeutic agents, and that non-malignant cells were less sensitive to this compound. Further studies revealed that in leukemia cells, OSW-1 causes a significant increase in cytosolic calcium and activates rapid calcium-dependent apoptosis by the intrinsic pathway. Additionally, OSW-1 treatment leads to the degradation of the ER chaperone GRP78/BiP implicated in the survival of cancer cells. Meanwhile, it shows a reduced sensitivity in respiration-deficient sub-clones of leukemia cells which had higher basal levels of Ca2+. Mechanistically, it was further demonstrated that cytosolic Ca2+ elevations were observed together with Na+ decreases in the cytosol, suggesting OSW-1 caused the calcium overload through inhibition of the Na+/Ca 2+exchanger (NCX). Although similar calcium disturbances were observed in pancreatic cancer cells, mechanistic studies revealed that autophagy served as an initial pro-survival mechanism subsequent to OSW-1 treatment but extended autophagy caused inevitable cell death. Furthermore, combination of OSW-1 with autophagy inhibitors significantly enhances the cytotoxicity against pancreatic cancer cells. Taken together, this study revealed the novel mechanism of OSW-1 which is through inhibition of the Na+/Ca2+ exchanger and provides a basis for using this compound in combination with other agents for the treatment of pancreatic cancer which is resistant to available anticancer drugs. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ecteinascidin 743 (Et-743), which is a novel DNA minor groove alkylator with a unique spectrum of antitumor activity, is currently being evaluated in phase II/III clinical trials. Although the precise molecular mechanisms responsible for the observed antitumor activity are poorly understood, recent data suggests that post-translational modifications of RNA polymerase II Large Subunit (RNAPII LS) may play a central role in the cellular response to this promising anticancer agent. The stalling of an actively transcribing RNAPII LS at Et-743-DNA adducts is the initial cellular signal for transcription-coupled nucleotide excision repair (TC-NER). In this manner, Et-743 poisons TC-NER and produces DNA single strand breaks. Et-743 also inhibits the transcription and RNAPII LS-mediated expression of selected genes. Because the poisoning of TC-NER and transcription inhibition are critical components of the molecular response to Et-743 treatment, we have investigated if changes in RNAPII LS contribute to the disruption of these two cellular pathways. In addition, we have studied changes in RNAPII LS in two tumors for which clinical responses were reported in phase I/II clinical trials: renal cell carcinoma and Ewing's sarcoma. Our results demonstrate that Et-743 induces degradation of the RNAPII LS that is dependent on active transcription, a functional 26S proteasome, and requires functional TC-NER, but not global genome repair. Additionally, we have provided the first experimental data indicating that degradation of RNAPII LS might lead to the inhibition of activated gene transcription. A set of studies performed in isogenic renal carcinoma cells deficient in von Hippel-Lindau protein, which is a ubiquitin-E3-ligase for RNAPII LS, confirmed the central role of RNAPII LS degradation in the sensitivity to Et-743. Finally, we have shown that RNAPII LS is also degraded in Ewing's sarcoma tumors following Et-743 treatment and provide data to suggest that this event plays a role in decreased expression of the Ewing's sarcoma oncoprotein, EWS-Fli1. Altogether, these data implicate degradation of RNAPII LS as a critical event following Et-743 exposure and suggest that the clinical activity observed in renal carcinoma and Ewing's sarcoma may be mediated by disruption of molecular pathways requiring a fully functional RNAPII LS. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mitochondria are actively engaged in the production of cellular energy sources, generation of reactive oxygen species (ROS), and regulation of apoptosis. Mitochondrial DNA (mtDNA) mutations/deletions and other mitochondrial abnormalities have been implicated in many diseases, especially cancer. Despite this, the roles that these defects play in cancer development, drug sensitivity, and disease progression still remain to be elucidated. The major objective of this investigation was to evaluate the mechanistic relationship between mitochondrial defects and alterations in free radical generation and chemosensitivity in primary chronic lymphocytic leukemia (CLL) cells. This study revealed that the mtDNA mutation frequency and basal superoxide generation are both significantly higher in primary cells from CLL patients with a history of chemotherapy as compared to cells from their untreated counterparts. CLL cells from refractory patients tended to have high mutation frequencies. The data suggest that chemotherapy with DNA-damaging agents may cause mtDNA mutations, which are associated with increased ROS generation and reduced drug sensitivity. Subsequent analyses demonstrated that CLL cells contain significantly more mitochondria than normal lymphocytes. This abnormal accumulation of mitochondria was linked to increased expression of nuclear respiratory factor-1 and mitochondrial transcription factor A, two key free radical-regulated mitochondrial biogenesis factors. Further analysis showed that mitochondrial content may have therapeutic implications since patient cells with high mitochondrial mass display significantly reduced in vitro sensitivity to fludarabine, a frontline agent in CLL therapy. The reduced in vitro and in vivo sensitivity to fludarabine observed in CLL cells with mitochondrial defects highlights the need for novel therapeutic strategies for the treatment of refractory disease. Brefeldin A, an inhibitor of endoplasmic reticulum (ER) to Golgi protein transport that is being developed as an anticancer agent, effectively induces apoptosis in fludarabine-refractory CLL cells through a secretory stress-mediated mechanism involving intracellular sequestration of pro-survival secretory factors. Taken together, these data indicate that mitochondrial defects in CLL cells are associated with alterations in free radical generation, mitochondrial biogenesis activity, and chemosensitivity. Abrogation of survival signaling by blocking ER to Golgi protein transport may be a promising therapeutic strategy for the treatment of CLL patients that respond poorly to conventional chemotherapy. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increased dependence on aerobic glycolysis for energy (ATP) supply has been observed in various human cancer cells. It is plausible to exploit this metabolic alteration for therapeutic benefits by inhibiting glycolysis to preferentially abolish cancer energy metabolism and kill the malignant cells. 3-Bromopyruvate has been shown to be a potent inhibitor of glycolysis capable of inducing severe ATP reduction and cell death in various cancer cell lines, especially cancer cells with mitochondrial defects or under hypoxic conditions. However, the detailed mechanisms of this novel anticancer agent still remain unclear. My study demonstrated that 3-Bromopyruvate caused a covalent modification of hexokinase II, a key glycolytic enzyme, and disrupted its association with mitochondria. This led to mitochondrial permeability transition and a substantial release of apoptosis-inducing faction (AIF) prior to cytochrome c release. Dissociation of HK II from mitochondria using a cell permeable specific peptide also induced the release of AIF and cytochrome c, and caused substantial cell death. HK II-targeted peptide did not cause significant change in mitochondria respiration and glycolysis activity, suggesting that dissociation of this molecule from mitochondria alone can also cause cell death, and that this may be a novel mechanism by which 3-Bromopyruvate exerts its potent cytotoxic action, in addition to its inhibition of the enzyme activity. Another significant new discovery was that 3-Bromopyruvate induced rapid reduction of protein ubiquitination in vivo, which occurred within several hours of drug incubation and before ATP reduction and cell death. Further mechanistic studies showed that this was due to the inhibition the ubiquitin activating enzyme E1 and the conjugating enzyme E2. Knocking down ubiquitin protein expression by siRNA did not suppress mitochondria respiration and glycolysis, but caused significant cell death. Taken together, this study demonstrated that induction of HK II dissociation from mitochondria and inhibition of glycolysis are two newly discovered mechanisms that contribute to the potent anticancer activity of 3-Bromopyruvate, and identified this compound as a valuable chemical tool for research in protein ubiquitination. ^