24 resultados para ALPHA,BETA-UNSATURATED ESTERS
em DigitalCommons@The Texas Medical Center
Resumo:
A simple and inexpensive method is described for analysis of uranium (U) activity and mass in water by liquid scintillation counting using $\alpha$/$\beta$ discrimination. This method appears to offer a solution to the need for an inexpensive protocol for monitoring U activity and mass simultaneously and an alternative to the potential inaccuracy involved when depending on the mass-to-activity conversion factor or activity screen.^ U is extracted virtually quantitatively into 20 ml extractive scintillator from a 1-$\ell$ aliquot of water acidified to less than pH 2. After phase separation, the sample is counted for a 20-minute screening count with a minimum detection level of 0.27 pCi $\ell\sp{-1}$. $\alpha$-particle emissions from the extracted U are counted with close to 100% efficiency with a Beckman LS6000 LL liquid scintillation counter equipped with pulse-shape discrimination electronics. Samples with activities higher than 10 pCi $\ell\sp-1$ are recounted for 500-1000 minutes for isotopic analysis. Isotopic analysis uses events that are automatically stored in spectral files and transferred to a computer during assay. The data can be transferred to a commercially available spreadsheet and retrieved for examination or data manipulation. Values for three readily observable spectral features can be rapidly identified by data examination and substituted into a simple formula to obtain $\sp{234}$U/$\sp{238}$U ratio for most samples. U mass is calculated by substituting the isotopic ratio value into a simple equation.^ The utility of this method for the proposed compliance monitoring of U in public drinking water supplies was field tested with a survey of drinking water from Texas supplies that had previously been known to contain elevated levels of gross $\alpha$ activity. U concentrations in 32 samples from 27 drinking water supplies ranged from 0.26 to 65.5 pCi $\ell\sp{-1}$, with seven samples exceeding the proposed Maximum Contaminant Level of 20 $\mu$g $\ell\sp{-1}$. Four exceeded the proposed activity screening level of 30 pCi $\ell\sp{-1}$. Isotopic ratios ranged from 0.87 to 41.8, while one sample contained $\sp{234}$U activity of 34.6 pCi $\ell\sp{-1}$ in the complete absence of its parent, $\sp{238}$U. U mass in the samples with elevated activity ranged from 0.0 to 103 $\mu$g $\ell\sp{-1}$. A limited test of screening surface and groundwaters for contamination by U from waste sites and natural processes was also successful. ^
Resumo:
The purpose of these studies was to investigate the role of interferon-beta (IFN-$\beta$) in angiogenesis. IFN-$\alpha/\beta$ have been implicated in inhibiting a number of steps in the angiogenic pathway. We examined the balance of angiogenesis-regulating molecules in several systems including human infantile hemangiomas, UV-B irradiated mice, and dorsal incisional wound healing in mice. In each system, epidermal hyperplasia and cutaneous angiogenesis were directly related to the expression of positive angiogenic factors (bFGF and VEGF) and inversely related to the expression of endogenous IFN-$\beta.$ The re-expression of IFN-$\beta$ correlated with tumor regression and/or resolution of wound healing. In contrast to control mice, UV-B-induced cutaneous angiogenesis and hyperplasia persisted in IFN-$\alpha/\beta$ receptor knock-out mice. In normal mice, endogenous IFN-$\beta$ was expressed by all differentiated epithelial cells exposed to environmental stimuli. The expression of endogenous IFN-$\beta$ was necessary but insufficient for complete differentiation of epidermal keratinocytes.^ The tumor organ microenvironment can regulate angiogenesis. Human bladder carcinoma cells growing in the bladder wall of nude mice express high levels of bFGF, VEGF, and MMP-9, have higher vascular densities, and produce metastases to lymph nodes and lungs, whereas the same cells growing subcutaneously express less bFGF, VEGF, and MMP-9, have lower vascular densities, and do not metastasize. IFN-$\alpha/\beta$ was found to inhibit bFGF and MMP-9 expression both in vitro and in vivo in human bladder carcinoma cells. Systemic therapy with human IFN-$\alpha$ of human bladder cancer cells growing orthotopically in nude mice, resulted in decreased vascularity, tumorigenicity, and metastasis as compared to saline treated mice. Human bladder cancer cells resistant to the antiproliferative effects of IFN were transfected with the human IFN-$\beta$ gene. Hu-IFN-$\beta$ transfected cells expressed significantly less bFGF protein and gelatinase activity than parental or control-transfected cells and did not grow at ectopic or orthotopic sites. Collectively the data provide direct evidence that IFN-$\alpha/\beta$ can inhibit angiogenesis via down-regulation of angiogenesis-stimulating cytokines. ^
Resumo:
The 90-kDa heat-shock protein (Hsp90) operates in the context of a multichaperone complex to promote maturation of nuclear and cytoplasmic clients. We have discovered that Hsp90 and the cochaperone Sba1/p23 accumulate in the nucleus of quiescent Saccharomyces cerevisiae cells. Hsp90 nuclear accumulation was unaffected in sba1Delta cells, demonstrating that Hsp82 translocates independently of Sba1. Translocation of both chaperones was dependent on the alpha/beta importin SRP1/KAP95. Hsp90 nuclear retention was coincident with glucose exhaustion and seems to be a starvation-specific response, as heat shock or 10% ethanol stress failed to elicit translocation. We generated nuclear accumulation-defective HSP82 mutants to probe the nature of this targeting event and identified a mutant with a single amino acid substitution (I578F) sufficient to retain Hsp90 in the cytoplasm in quiescent cells. Diploid hsp82-I578F cells exhibited pronounced defects in spore wall construction and maturation, resulting in catastrophic sporulation. The mislocalization and sporulation phenotypes were shared by another previously identified HSP82 mutant allele. Pharmacological inhibition of Hsp90 with macbecin in sporulating diploid cells also blocked spore formation, underscoring the importance of this chaperone in this developmental program.
Resumo:
Inappropriate response tendencies may be stopped via a specific fronto/basal ganglia/primary motor cortical network. We sought to characterize the functional role of two regions in this putative stopping network, the right inferior frontal gyrus (IFG) and the primary motor cortex (M1), using electocorticography from subdural electrodes in four patients while they performed a stop-signal task. On each trial, a motor response was initiated, and on a minority of trials a stop signal instructed the patient to try to stop the response. For each patient, there was a greater right IFG response in the beta frequency band ( approximately 16 Hz) for successful versus unsuccessful stop trials. This finding adds to evidence for a functional network for stopping because changes in beta frequency activity have also been observed in the basal ganglia in association with behavioral stopping. In addition, the right IFG response occurred 100-250 ms after the stop signal, a time range consistent with a putative inhibitory control process rather than with stop-signal processing or feedback regarding success. A downstream target of inhibitory control is M1. In each patient, there was alpha/beta band desynchronization in M1 for stop trials. However, the degree of desynchronization in M1 was less for successfully than unsuccessfully stopped trials. This reduced desynchronization on successful stop trials could relate to increased GABA inhibition in M1. Together with other findings, the results suggest that behavioral stopping is implemented via synchronized activity in the beta frequency band in a right IFG/basal ganglia network, with downstream effects on M1.
Resumo:
Aminoacyl-tRNA synthetases (RSs) are responsible for the essential connection of amino acids with trinucleotide sequences of tRNA's. The RS family constitutes two structurally dissimilar groups of proteins, class I and class II. Methionyl-tRNA synthetase (MetRS) and isoleucyl-tRNA synthetase (IleRS), both members of class I, were the focus of this work. Both enzymes are zinc-containing proteins; show a high degree of amino acid specificity; and edit activated noncognate amino acids, thereby ensuring the fidelity of the genetic code. The goals of this work were to further delineate the molecular basis of catalysis and discrimination in these enzymes by mapping active site geometries using high-resolution nuclear magnetic resonance spectroscopy (NMR).^ Internuclear distances obtained from transferred nuclear Overhauser effects were used to define the conformations of Mg($\alpha$,$\beta$-methylene)ATP bound to E. coli MetRS and E. coli IleRS in multiple complexes. Identical conformations were found for the bound ATP. Thus, the predicted structural homology between IleRS and MetRS is supported by consensus enzyme-bound nucleotide conformations. The conformation of the bound nucleotide is not sensitive to occupation of the amino acid site of MetRS or IleRS. Therefore, conformational changes known to occur in the synthetases upon ligand binding appear not to alter the bound conformation of the adenosine portion of the nucleotide. Nuclear Overhauser effects on the substrate amino acid L-selenomethionine were also used to evaluate the enzyme-bound conformation of the cognate amino acid. The amino acid assumes a conformation which is consistent with a proposed editing mechanism.^ The E. coli MetRS was shown to catalyze amino acid $\alpha$-proton exchange in the presence of deuterium oxide of all cognate amino acids. It is proposed that the enzyme-bound zinc coordinates the $\alpha$-carboxylate of the amino acid, rendering the $\alpha$-proton more acidic. An enzymic base is responsible for exchange of the $\alpha$-proton. This proposal suggests that the enzyme-bound zinc may have a role in amino acid discrimination in MetRS. However, the role of this exchange reaction in catalysis remains unknown. ^
Resumo:
There have been numerous reports over the past several years on the ability of vitamin A analogs (retinoids) to modulate cell proliferation, malignant transformation, morphogenesis, and differentiation in a wide variety of cell types and organisms. Two families of nuclear retinoid-inducible, trans-acting, transcription-enhancing receptors that bear strong DNA sequence homology to thyroid and steroid hormone receptors have recently been discovered. The retinoic acid receptors (RARs) and retinoid X receptors (RXRs) each have at least three types designated $\alpha,$ $\beta,$ and $\gamma,$ which are encoded by separate genes and expressed in a tissue and cell type-specific manner. We have been interested in the mechanism by which retinoids inhibit tumor cell proliferation and induce differentiation. As a model system we have employed several murine melanoma cell lines (S91-C2, K1735P, and B16-F1), which are sensitive to the growth-inhibitory and differentiation-inducing effects of RA, as well as a RA-resistant subclone of one of the cell lines (S91-C154), in order to study the role of the nuclear RARs in these effects. The initial phase of this project consisted of the characterization of the expression pattern of the three known RAR and RXR types in the murine melanoma cell lines in order to determine whether any differences exist which may elucidate a role for any of the receptors in RA-induced growth inhibition and differentiation. The novel finding was made that the RAR-$\beta$ gene is rapidly induced from undetectable levels by RA treatment at the mRNA and protein level, and that the induction of RAR-$\beta$ by other biologically active retinoids correlated with their ability to inhibit the growth of the highly RA-sensitive S91-C2 cell line. This suggests a role for RAR-$\beta$ in the growth inhibiting effect of retinoids. The second phase of this project involves the stable expression of RAR-$\beta$ in the S91-C2 cells and the RAR-$\beta$ receptor-null cell line, K1735P. These studies have indicated an inverse correlation between RAR-$\beta$ expression and proliferation rate. ^
Mechanism of dendritic epidermal T cell-mediated tolerance induction and inhibition of proliferation
Resumo:
Dendritic epidermal T cells (DETC) comprise a unique population of T cells that reside in mouse epidermis and whose function remains unclear. Most DETC express a $\gamma\delta$ TCR, although some, including our DETC line, AU16, express an $\alpha\beta$ TCR. Additionally, AU16 cells express CD3, Thy-1, CD45, CD28, B7, and AsGM-1. Previous studies in our laboratory demonstrated that hapten-conjugated AU16 could induce specific immunologic tolerance in vivo and inhibit T cell proliferation in vitro. Both these activities are antigen-specific, and the induction of tolerance is non-MHC-restricted. In addition, AU16 cells are cytotoxic to a number of tumor cell lines in vitro. These studies suggested a role for these cells in immune surveillance. The purpose of my studies was to test the hypothesis that these functions of DETC (tolerance induction, inhibition of T cell proliferation, and tumor cell killing) were mediated by a cytotoxic mechanism. My specific aims were (1) to determine whether AU16 could prevent or delay tumor growth in vivo; and (2) to determine the mechanism whereby AU16 induce tolerance, using an in vitro proliferation assay. I first showed that AU16 cells killed a variety of skin tumor cell lines in vitro. I then demonstrated that they prevented melanoma growth in C3H mice when both cell types were mixed immediately prior to intradermal (i.d.) injection. Studies using the in vitro proliferation assay confirmed that DETC inhibit proliferation of T cells stimulated by hapten-bearing, antigen-presenting cells (FITC-APC). To determine which cell was the target, $\gamma$-irradiated, hapten-conjugated AU16 were added to the proliferation assay on d 4. They profoundly inhibited the proliferation of naive T cells to $\gamma$-irradiated, FITC-APC, as measured by ($\sp3$H) TdR uptake. This result strongly suggested that the T cell was the target of the AU16 activity because no APC were present by d 4 of the in vitro culture. In contrast, the addition of FITC-conjugated splenic T cells (SP-T) or lymph node T cells (LN-T) was less inhibitory. Preincubation of the T cells with FITC-AU16 cells for 24 h, followed by removal of the AU16 cells, completely inhibited the ability of the T cells to proliferate in response to FITC-APC, further supporting the conclusion that the T cell was the target of the AU16. Finally, AU16 cells were capable of killing a variety of activated T cells and T cell lines, arguing that the mechanism of proliferation inhibition, and possibly tolerance induction is one of cytotoxicity. Importantly, $\gamma\delta$ TCR$\sp+$ DETC behaved, both in vivo and in vitro like AU16, whereas other T cells did not. Therefore, these results are consistent with the hypothesis that AU16 cells are true DETC and that they induce tolerance by killing T cells that are antigen-activated in vivo. ^
Resumo:
Ultraviolet B (UVB) radiation, in addition to being carcinogenic, is also immunosuppressive. Immunologically, UVB induces suppression locally, at the site of irradiation, or systemically, by inducing the production of a variety of immunosuppressive cytokines. Systemic effects include suppression of delayed-type hypersensitivity (DTH) responses to a variety of antigens (e.g. haptens, proteins, bacterial antigens, or alloantigens). One of the principal mediators of UV-induced immune suppression is the T helper-2 (Th2) cytokine interleukin-10 (IL-10); this suggests that UV irradiation induces suppression by shifting the immune response from a Th1 (cellular) to a Th2 (humoral) response. These "opposing" T helper responses are usually mutually exclusive, and polarized Th1 or Th2 responses may lead to either protection from infection or increased susceptibility to disease, depending on the infectious agent and the route of infection.^ This study examines the effects of UVB irradiation on cellular and humoral responses to Borrelia burgdorferi (Bb), the causative agent of Lyme disease (LD) in both immunization and infectious disease models; in addition, it examines the role of T cells in protection from and pathology of Bb infection. Particular emphasis is placed on the Bb-specific antibody responses following irradiation since UVB effects on humoral immunity are not fully understood. Mice were irradiated with a single dose of UV and then immunized (in complete Freund's adjuvant) or infected with Bb (intradermally at the base of the tail) in order to examine both DTH and antibody responses in both systems. UVB suppressed the Th1-associated antibodies IgG2a and IgG2b in both systems, as well as the DTH response to Bb in a dose dependent manner. Injection of anti-IL-10 antibody into UV-irradiated mice within 24 h after UV exposure restored the DTH response, as well as the Th1 antibody (IgG2a and IgG2b) response. In addition, injecting recombinant IL-10 mimicked some of the effects of UV radiation.^ Bb-specific Th1 T cell lines (BAT2.1-2.3) were generated to examine the role of T cells in Lyme borreliosis. All lines were CD4$\sp+,$ $\alpha\beta\sp+$ and proliferated specifically in response to Bb. The BAT2 cell lines not only conferred a DTH response to naive C3H recipients, but reduced the number of organisms recovered from the blood and tissues of mice infected with Bb. Furthermore, BAT2 cell lines protected mice from Bb-induced periarthritis. ^
Resumo:
The major goal of this work was to define the role of accessory protein, NARJ, in assembly of nitrate reductase which is a membrane-bound multisubunit enzyme that can catalyze the reduction of nitrate to nitrite under anaerobic growth in E. coli. Nitrate reductase is encoded by the nar GHJI operon under control of the narG promoter. The purified nitrate reductase is composed of three subunits: $\alpha,\ \beta,$ and $\gamma.$ The NARJ protein which is encoded by the third gene (narJ) is not found to be associated with any of the purified preparations of the enzyme, but is required for active nitrate reductase. In this study the product of the narJ gene was identified. NARJ appeared to be produced at a reduced level, compared to the other proteins encoded by the nar operon. Since NARJ could not be overexpressed to a level for an efficient purification, NARJ was expressed and purified as a recombinant protein with polyhistidine tag. The recombinant protein NARJ-6His could functionally replace native NARJ. Purified NARJ-6His is a dimeric protein which contains no identifiable cofactors or unique secondary structure. NARJ was localized in the cytoplasm, and was not associated with nitrate reductase in the membrane. In vivo NARJ activated the $\alpha\beta$ complex and stabilized the $\alpha$ subunit against protease degradation. In the absence of the membrane-bound $\gamma$ subunit, NARJ formed an intermediate complex with $\alpha\beta$ in the cytosol. Based on these studies, NARJ fits the formal definition of a molecular chaperone. It appears to be required only for the biogenesis of nitrate reductase and, therefore, is defined as a private chaperone specifically involved in the assembly of nitrate reductase system. ^
Resumo:
Nitrate reductase in Escherichia coli is a membrane-bound anaerobic enzyme that is repressed by oxygen and induced by nitrate. The genetic organization of the structural genes for the two larger subunits of nitrate reductase ((alpha) and (beta)) was determined by immunoprecipitation analysis of the formation of these proteins in nitrate reductase-deficient mutants resulting from transposon Tn5 mutagenesis. The results suggested that the genes encoding the (alpha) and (beta) subunits (narG and H) were arranged in an operon with transcription in the direction promoter(--->)(alpha)(--->)(beta). Segments of the chromosome containing the Tn5 inserts from several of the mutants were cloned into plasmid pBR322 and the positions of the transposons determined by restriction mapping. The Tn5 insertion sites were localized on two contiguous EcoRI fragments spanning about 6.6 kilobases of DNA. The narI gene (proposed to encode the (gamma) subunit) was positioned immediately downstream from the (beta)-gene (narH) by Southern analysis of Tn10 insertions into the narI locus. A Tn10 insertion into the narK locus, proposed to encode a nitrate-sensitive repressor of other anaerobic enzymes, was located about 1.5 kilobases upstream from the narGHI operon promoter. The narL locus, proposed to encode a nitrate-sensitive positive regulator of the narGHI operon and known to be genetically linked to the other nar genes, was demonstrated to lie outside a 19.3-kilobase region of the chromosome which encompasses the other nar genes. The physical limit of the narGHI promoter was defined by studying the effect of Tn5 insertions into a hybrid plasmid containing the functional operon. The points of origin of the coding regions for the (alpha) and (beta) genes were deduced by alignment of the chromosomal map of Tn5 insertion sites with the sizes of (alpha) and (beta) subunit fragments produced by plasmids carrying these Tn5 inserts in the nar operon. The coding region for the (alpha) subunit (143,000 daltons) begins about 250 nucleotides downstream from the deduced limit of the promoter region and includes about 4.0 kilobases of DNA; the region encoding (beta) (60,000 daltons) lies immediately downstream from the (alpha)-gene and is approximately 1.6 kilobases in length. The adjacent region encoding the (gamma) subunit (19,000 daltons) is approximately 0.5 kilobase in length. ^
Resumo:
Retinoids have been found to be effective in the prevention of premalignant lesions and second primary cancers in the upper aerodigestive tract. Further development of retinoids for prevention and therapy of head and neck squamous cell carcinoma (HNSCC) requires a better understanding of their mechanism of action on the growth and differentiation of such cells. I have chosen to employ cultured HNSCC cell lines as a model system for investigating the mechanism underlying the effects of retinoids. These cells are useful because all-trans retinoic acid (ATRA) inhibits their proliferation. Furthermore, two HNSCC cell lines were found to express three squamous differentiation (SqD) markers characteristic of normal keratinocytes and ATRA suppressed the expression of these markers as reported for normal keratinocytes. It is thought that nuclear retinoic acid receptors (RARs and RXRs), which act as DNA-binding transcription modulating factors, mediate the effects of retinoids on the growth and differentiation of normal and tumor cells. I found that all four cell lines examined expressed RAR-$\alpha ,$ RAR-$\tau ,$ and RXR-$\alpha$ and three of four expressed RAR-$\beta .$ ATRA treatment increased the level of RAR-$\alpha ,$ -$\beta ,$ and -$\tau$ in four cell lines. Two HNSCC cell lines that exhibited a progressive increase in the expression of SqD markers during growth in culture also showed a concurrent decrease in RAR-$\beta$ level. Moreover, increasing concentrations of RA suppressed the SqD marker while inducing RAR-$\beta$ mRNA. Several synthetic retinoids which exhibit a preference for binding to specific nuclear RARs showed a differential ability to inhibit cell proliferation, transactivate transcription of the reporter genes (CAT and luciferase) from the RA response element (RARE) of the RAR-$\beta$ gene, and induce RAR-$\beta$ expression. Those retinoids that were effective inducers of RAR-$\beta$ also suppressed SqD effectively, indicating an inverse relationship exists between the expression of RAR-$\beta$ and SqD. This inverse relationship suggests a role for RAR-$\beta$ in the suppression of SqD. ^
Resumo:
Cell-based therapies have demonstrated potency and efficacy as cancer treatment modalities. T cells can be dichotomized by their T cell receptor (TCR) complexes where alpha/beta T cells (95% of T cells) and gamma/delta T cells (+T cells proliferated to clinically significant numbers and ROR1+ tumor cells were effectively targeted and killed by both ROR1-specific CAR+ T cell populations, although ROR1RCD137 were superior to ROR1RCD28 in clearance of leukemia xenografts in vivo. The second specific aim focused on generating bi-specific CD19-specific CAR+ gamma/delta T cells with polyclonal TCRgamma/delta repertoire on CD19+ artificial antigen presenting cells (aAPC). Enhanced cytolysis of CD19+ leukemia was observed by CAR+ gamma/delta T cells compared to CARneg gamma/delta T cells, and leukemia xenografts were significantly reduced compared to control mice in vivo. The third specific aim looked at the broad anti-tumor effects of polyclonal gamma/delta T cells expanded on aAPC without CAR+ T cells, where Vdelta1, Vdelta2, and Vdelta3 populations had naïve, effector memory, and central memory phenotypes and effector function strength in the following order: Vdelta2>Vdelta3>Vdelta1. Polyclonal gamma/delta T cells eliminated ovarian cancer xenografts in vivo and increased survival compared to control mice. Thus, translating these methodologies to clinical trials will provide cancer patients novel, safe, and effective options for their treatment.
Resumo:
Propionyl-coenzyme A carboxylase (PCC), a mitochondrial biotin-dependent enzyme, is essential for the catabolism of the amino acids Thr, Val, Ile and Met, cholesterol and fatty acids with an odd number of carbon atoms. Deficiencies in PCC activity in humans are linked to the disease propionic acidaemia, an autosomal recessive disorder that can be fatal in infants. The holoenzyme of PCC is an alpha(6)beta(6) dodecamer, with a molecular mass of 750 kDa. The alpha-subunit contains the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains, whereas the beta-subunit supplies the carboxyltransferase (CT) activity. Here we report the crystal structure at 3.2-A resolution of a bacterial PCC alpha(6)beta(6) holoenzyme as well as cryo-electron microscopy (cryo-EM) reconstruction at 15-A resolution demonstrating a similar structure for human PCC. The structure defines the overall architecture of PCC and reveals unexpectedly that the alpha-subunits are arranged as monomers in the holoenzyme, decorating a central beta(6) hexamer. A hitherto unrecognized domain in the alpha-subunit, formed by residues between the BC and BCCP domains, is crucial for interactions with the beta-subunit. We have named it the BT domain. The structure reveals for the first time the relative positions of the BC and CT active sites in the holoenzyme. They are separated by approximately 55 A, indicating that the entire BCCP domain must translocate during catalysis. The BCCP domain is located in the active site of the beta-subunit in the current structure, providing insight for its involvement in the CT reaction. The structural information establishes a molecular basis for understanding the large collection of disease-causing mutations in PCC and is relevant for the holoenzymes of other biotin-dependent carboxylases, including 3-methylcrotonyl-CoA carboxylase (MCC) and eukaryotic acetyl-CoA carboxylase (ACC).
Resumo:
The integrin receptor $\alpha 4\beta 1$ is a cell surface heterodimer involved in a variety of highly regulated cellular interactions. The purpose of this dissertation was to identify and characterize unique structural and functional properties of the $\alpha 4\beta 1$ molecule that may be important for adhesion regulation and signal transduction. To study these properties and to establish a consensus sequence for the $\alpha 4$ subunit, cDNA encoding $\alpha 4$ was cloned and sequenced. A comparison with previously described human $\alpha 4$ sequences identified several substitutions in the $5\prime$ and $3\prime$ untranslated regions, and a nonsynonymous G to A transition in the coding region, resulting in a glutamine substitution for arginine. Further analysis of this single nucleotide substitution indicated that two variants of the $\alpha 4$ subunit exist, and when compared with three ancestrally-related species, the new form cloned in our laboratory was found to be evolutionarily conserved.^ The expression of $\alpha 4$ cDNA in transfected K562 erythroleukemia cells, and subsequent studies using flow cytofluorometric, immunochemical, and ligand binding/blocking analyses, confirmed $\alpha 4\beta 1$ as a receptor for fibronectin (FN) and vascular cell adhesion molecule-1 (VCAM-1), and provided a practical means of identifying two novel monoclonal antibody (mAb) binding epitopes on the $\alpha 4\beta 1$ complex that may play important roles in the regulation of leukocyte adhesion.^ To investigate the association of $\alpha 4\beta 1$-mediated adhesion with signals involved in the spreading of lymphocytes on FN, a quantitative method of analysis was developed using video microscopy and digital imaging. The results showed that HPB-ALL $(\alpha 4\beta 1\sp{\rm hi},\ \alpha 5\beta 1\sp-)$ cells could adhere and actively spread on human plasma FN, but not on control substrate. Many cell types which express different levels of the $\alpha 4\beta 1$ and $\alpha 5\beta 1$ FN binding integrins were examined for their ability to function in these events. Using anti-$\alpha 4$ and anti-$\alpha 5$ mAbs, it was determined that cell adhesion to FN was influenced by both $\beta 1$ integrins, while cell spreading was found to be dependent on the $\alpha 4\beta 1$ complex. In addition, inhibitors of phospholipase A$\sb2$ (PLA$\sb2$), 5-lipoxygenases, and cyclooxygenases blocked HPB-ALL cell spreading, yet had no effect on cell adhesion to FN, and the impaired spreading induced by the PLA$\sb2$ inhibitor cibacron blue was restored by the addition of exogenous arachidonic acid (AA). These results suggest that the interaction of $\alpha 4\beta 1$ with FN, the activation of PLA$\sb2,$ and the subsequent release of AA, may be involved in lymphocyte spreading. ^
Resumo:
Alpha and beta tubulin are essential proteins in all eukaryotic cells. To study how cells maintain coordinate levels of these two interacting proteins, we have used PCR to add a 9 amino acid epitope from influenza hemagglutinin protein onto the carboxyl terminus of $\alpha$1 and $\beta$1-tubulin. The chimeric tubulin genes (HA$\alpha$1 and HA$\beta$1) were transfected into CHO cells and cell lines that stably express each gene were selected. Cells transfected with HA-tubulin do not exhibit any gross changes in growth or morphology. Immunofluorescence analysis demonstrated that HA-tubulins incorporate into both cytoplasmic and spindle microtubules. A quantitative biochemical assay was used to show that HA-tubulins incorporate into microtubules to a normal extent and do not alter the steady state distribution of endogenous tubulin between monomer and polymer pools. Two-dimensional gel analysis of pulse-labeled cells indicated that when HA$\beta$1-tubulin is expressed at high levels, it slightly represses the synthesis of the endogenous $\beta$-tubulin but produces a small increase in the synthesis of $\alpha$-tubulin. Analysis of cells labeled to steady state showed that HA$\beta$1-tubulin accumulates to a similar level as the wild-type gene product, but together these polypeptides produce only a small increase in total tubulin content consistent with the increased synthesis of $\alpha$-tubulin. It thus appears that HA$\beta$1-tubulin successfully competes with endogenous $\beta$-tubulin for heterodimer formation and that free $\beta$-tubulin subunits (endogenous and HA$\beta$1) are selectively degraded to maintain coordinate amounts of $\alpha$- and $\beta$-tubulin. In addition, the increased synthesis of $\alpha$-tubulin suggested the existence of a mechanism to ensure coordinate synthesis of $\alpha$- and $\beta$-tubulin subunits. To analyze whether reciprocal changes in endogenous tubulin synthesis occur when $\alpha$-tubulin is overexpressed, stably transfected CHO cell lines were isolated in which HA$\alpha$1-tubulin represents 50% of the total $\alpha$-tubulin, and its relative abundance can be further increased to 85-90% by treatment with sodium butyrate. In contrast with results obtained using HA$\beta$1-tubulin, transfection of HA$\alpha$1-tubulin decreased the synthesis of endogenous $\alpha$-tubulin to 60% of normal with little or no change in $\beta$-tubulin synthesis. When the transfected cells were treated with sodium butyrate to further increase HA$\beta$1-tubulin production, a larger decrease in the synthesis of endogenous $\alpha$-tubulin (to 30% of normal) was observed. The repression on the synthesis of endogenous $\alpha$-tubulin polypeptide was found to be directly proportional to the expression of HA$\alpha$1-tubulin indicating the existence of an autoregulatory loop, where $\alpha$-tubulin inhibits its own synthesis. To determine whether overproduction of HA$\alpha$1-tubulin affected the transcription, message stability or translation of endogenous $\alpha$-tubulin, the steady state levels of $\alpha$-tubulin mRNA were analyzed by ribonuclease protection assays. The results showed that the steady state level of $\alpha$-tubulin mRNA is not affected by the overexpression of HA$\alpha$1-tubulin, indicating that the repression is translational. The results are compatible with a model in which $\beta$-tubulin synthesis is largely unperturbed by overexpression of other tubulin subunits, and excess $\beta$-tubulin subunits are rapidly degraded to maintain coordinate $\alpha$- and $\beta$-tubulin levels at steady state. In contrast, free $\alpha$-tubulin represses its own synthesis at the translational level, suggesting that its level of production may be controlled by the amount of $\beta$-tubulin available for heterodimer formation. ^