3 resultados para ALP

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adherence to HIV/AIDS therapies has been an important health problem since the early 1980s when AZT was first prescribed as a therapy for HIV/AIDS. It became particularly important between 1995 and 1997 with the advent of protease inhibitors (Chesney, Ickovics, Hecht, Sikipa, & Rabkin J., 1999) and became even more significant as persons with HIV/AIDS began to develop resistance to medications. Low-literacy populations have poorer health (Brez & Taylor, 1997) and higher AIDS rates (Simon, Hu, Diaz, & Kerndt, 1995), than their higher literacy counterparts due to delayed treatment (Baker, Parker, Williams, Clark, & Nurss, 1997), shame of literacy skills (Parikh, 1996), and poor access to care (Williams, et al., 1995). Poorer health and higher AIDS rates can also be attributed to poor patient-provider relationships (Crespo-Fierro, 1997; Eldred, Wu, Chaisson, & Moore, 1998) to a poorer understanding of medical protocols (Murphy, 1997), and inadequate patient education (Ungvarski, 1997; Davis, Michielutte, Askov, Williams, & Weiss, 1998, Doak, Doak, & Root, 1996). ^ The ALP intervention was developed for HIV positive low-literacy populations of African American women in Houston, Texas. The intervention was based on a needs assessment, using the PRECEDE model, an innovative process referred to as Intervention Mapping, and validated using formative evaluation methods with 54 individuals. The needs assessment resulted in a list of behavioral, environmental, predisposing, enabling, and reinforcing determinants of adherence. The Intervention Mapping framework was used to refine these determinants and develop a list of objectives describing what must be learned or changed to for the target population to adhere to HIV/AIDS therapies. Methods and strategies, were developed using theoretical constructs from the Health Belief Model (Rosenstock, 1974) and Social Cognitive Theory (Bandura, 1986). These theories, empirical evidence, and information from the target population indicated that perceived susceptibility, perceived severity, outcome expectations, and self-efficacy were important and changeable determinants of adherence to HIV/AIDS therapies for this population. ^ These components were brought together in the form of a theory-based color cartoon book and 10-minute cassette tape. The book was developed for people with 2.9 years of U.S. education as measured with the Flesch-Kincaid Grade Level method and the script was recorded onto a cassette tape to make it suitable for populations with even lower-literacy skills. A formative evaluation was conducted to ensure that the content and structure were accurate, clear, realistic, readable, appropriate, and likely to be used as intended. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.