4 resultados para AKR
em DigitalCommons@The Texas Medical Center
Resumo:
Untreated AKR mice develop spontaneous thymic lymphomas by 6-12 months of age. Lymphoma development is accelerated when young mice are injected with the carcinogen N-methyl-N-nitrosourea (MNU). Selected molecular and cellular events were compared during the latent period preceding "spontaneous" (retrovirally-induced) and MNU-induced thymic lymphoma development in AKR mice. These studies were undertaken to test the hypothesis that thymic lymphomas induced in the same inbred mouse strain by endogenous retroviruses and by a chemical carcinogen develop by different mechanisms.^ Immunofluorescence analysis of differentiation antigens showed that most MNU-induced lymphomas express an immature CD4-8+ profile. In contrast, spontaneous lymphomas represent each of the major lymphocyte subsets. These data suggest involvement of different target populations in MNU-induced and spontaneous lymphomas. Analyses at intervals after MNU treatment revealed selective expansion of the CD4-8+ J11d+ thymocyte subset at 8-10 weeks post-MNU in 68% of the animals examined, suggesting that these cells are targets for MNU-induced lymphomagenesis. Untreated age-matched animals showed no selective expansion of thymocyte subsets.^ Previous data have shown that both spontaneous and MNU-induced lymphomas are monoclonal or oligoclonal. Distinct rearrangement patterns of the J$\sb2$ region of the T-cell receptor $\beta$-chain showed emergence of clonal thymocyte populations beginning at 6-7 weeks after MNU treatment. However, lymphocytes from untreated animals showed no evidence of clonal expansion at the time intervals investigated.^ Activation of c-myc frequently occurs during development of B- and T- cell lymphomas. Both spontaneous and MNU-induced lymphomas showed increased c-myc transcript levels. Increased c-myc transcription was first detected at 6 weeks post-MNU, and persisted throughout the latent period. However, untreated animals showed no increases in c-myc transcripts at the time intervals examined. Another nuclear oncogene, c-fos, did not display a similar change in RNA transcription during the latent period.^ These results supports the hypothesis that MNU-induced and spontaneous tumors develop by multi-step pathways which are distinct with respect to the target cell population affected. Clonal emergence and c-myc deregulation are important steps in the development of both MNU-induced and spontaneous tumors, but the onset of these events is later in spontaneous tumor development. ^
Resumo:
T-cell lymphomas from AKR mice were studied to determine their potential as a model of T-cell differentiation. Homogeneous tumor cell lines have been used as model to study normal lymphocyte subpopulations, including differentiation lineages, functional properties, and the inducibility to maturation. The underlying concept is that each lymphoid tumor represents a monoclonal neoplastic proliferation of a discrete lymphoid subpopulation arrested at a particular differentiation stage.^ Individual tumors were analyzed to determine the extent of intertumor heterogeneity, and to determine whether lymphomas represented different thymocyte subsets, by determining the cell-surface antigenic phenotype, PNA-binding capacity, and terminal deoxynucleotidyl transferase (TdT) activity. Splenic and thymic tumor cells were compared to determine if the particular lymphoid microenvironment influenced T-cell marker expression. Several of the lymphomas were passaged in syngeneic hosts to verify the original tumor phenotype and to assess the stability of the cell surface and TdT phenotype after transplantation.^ Lymphomas were adapted to in vitro culture to determine whether the T-cell phenotype was maintained in the absence of the host microenvironment. Clonal progeny were analyzed and compared with each other and with parent cell lines to determine the extent of intratumor heterogeneity in this lymphoma system. Parent and cloned cell lines were passaged in vivo to determine whether alterations in surface phenotype occurred after transplantation.^ Our investigation has verified that most spontaneous AKR lymphomas phenotypically resemble known T-cell subsets, including both immature and mature thymic subpopulations. The in vitro lines, however, expressed a highly unstable phenotype in culture that included loss of Ly-1 and Ly-2 antigen expression. After transplantation in vivo, the in vitro lines exhibited alterations in phenotype, including re-expression of Ly antigen on some lymphomas. The inducibility of T-cell antigen markers on tumor cell lines passaged in vivo suggests that the in vitro lines may serve as a possible model system to study the molecular events involved in gene expression in the T-cell system. ^