11 resultados para AIR POLLUTANTS
em DigitalCommons@The Texas Medical Center
Resumo:
Southeast Texas, including Houston, has a large presence of industrial facilities and has been documented to have poorer air quality and significantly higher cancer rates than the remainder of Texas. Given citizens’ concerns in this 4th largest city in the U.S., Mayor Bill White recently partnered with the UT School of Public Health to determine methods to evaluate the health risks of hazardous air pollutants (HAPs). Sexton et al. (2007) published a report that strongly encouraged analytic studies linking these pollutants with health outcomes. In response, we set out to complete the following aims: 1. determine the optimal exposure assessment strategy to assess the association between childhood cancer rates and increased ambient levels of benzene and 1,3-butadiene (in an ecologic setting) and 2. evaluate whether census tracts with the highest levels of benzene or 1,3-butadiene have higher incidence of childhood lymphohematopoietic cancer compared with census tracts with the lowest levels of benzene or 1,3-butadiene, using Poisson regression. The first aim was achieved by evaluating the usefulness of four data sources: geographic information systems (GIS) to identify proximity to point sources of industrial air pollution, industrial emission data from the U.S. EPA’s Toxic Release Inventory (TRI), routine monitoring data from the U.S. EPA Air Quality System (AQS) from 1999-2000 and modeled ambient air levels from the U.S. EPA’s 1999 National Air Toxic Assessment Project (NATA) ASPEN model. Further, once these four data sources were evaluated, we narrowed them down to two: the routine monitoring data from the AQS for the years 1998-2000 and the 1999 U.S. EPA NATA ASPEN modeled data. We applied kriging (spatial interpolation) methodology to the monitoring data and compared the kriged values to the ASPEN modeled data. Our results indicated poor agreement between the two methods. Relative to the U.S. EPA ASPEN modeled estimates, relying on kriging to classify census tracts into exposure groups would have caused a great deal of misclassification. To address the second aim, we additionally obtained childhood lymphohematopoietic cancer data for 1995-2004 from the Texas Cancer Registry. The U.S. EPA ASPEN modeled data were used to estimate ambient levels of benzene and 1,3-butadiene in separate Poisson regression analyses. All data were analyzed at the census tract level. We found that census tracts with the highest benzene levels had elevated rates of all leukemia (rate ratio (RR) = 1.37; 95% confidence interval (CI), 1.05-1.78). Among census tracts with the highest 1,3-butadiene levels, we observed RRs of 1.40 (95% CI, 1.07-1.81) for all leukemia. We detected no associations between benzene or 1,3-butadiene levels and childhood lymphoma incidence. This study is the first to examine this association in Harris and surrounding counties in Texas and is among the first to correlate monitored levels of HAPs with childhood lymphohematopoietic cancer incidence, evaluating several analytic methods in an effort to determine the most appropriate approach to test this association. Despite recognized weakness of ecologic analyses, our analysis suggests an association between childhood leukemia and hazardous air pollution.^
Resumo:
Recent studies have reported positive associations between maternal exposures to air pollutants and several adverse birth outcomes. However, there have been no assessments of the association between environmental hazardous air pollutants (HAPs) such as benzene, toluene, ethylbenzene, and xylene (BTEX) and neural tube defects (NTDs) a common and serious group of congenital malformations. Before examining this association, two important methodological questions must be addressed: (1) is maternal residential movement likely to result in exposure misclassification and (2) is it appropriate to lump defects of the neural tube, such as anencephaly and spina bifida, into a composite disease endpoint (i.e., NTDs). ^ Data from the National Birth Defects Prevention Study and Texas Birth Defects Registry were used to: (1) assess the extent to which change of residence may result in exposure misclassification when exposure is based on the address at delivery; (2) formally assess heterogeneity of the associations between known risk factors for NTDs, using polytomous logistic regression; and (3) conduct a case-control study assessing the association between ambient air levels of BTEX and the risk of NTDs among offspring. ^ Regarding maternal residential mobility, this study suggests address at delivery was not significantly different from using address at conception when assigning quartile of benzene exposure (OR 1.0, 95% CI 0.9, 1.3). On the question of effect heterogeneity among NTDs, the effect estimates for infant sex P = 0.017), maternal body mass index P = 0.016), and folate supplementation P = 0.050) were significantly different for anencephaly and spina bifida, suggesting it is often more appropriate to assess potential risk factors among subgroups of NTDs. For the main study question on the association between environmental HAPs and NTDs, mothers who have offspring with isolated spina bifida are 2.4 times likely to live in areas with the highest benzene levels (95% CI 1.1, 5.0). However, no other significant associations were observed.^ This project is the first to include not only an assessment of the relationship between environmental levels of BTEX and NTDs, but also two separate studies addressing important methodological issues associated with this question. Our results contribute to the growing body of evidence regarding air pollutant exposure and adverse birth outcomes. ^
Resumo:
Birth defects are a leading cause of infant mortality in the United States. About one in 33 births in the United States is diagnosed with birth defects. Common birth defects include neural tube defects, Down syndrome and oral clefts. The present study focused on oral clefts. ^ Oral clefts refer to the malformation of lip, mouth or both. Birth prevalence of oral clefts in Texas is about 11 per 10,000 births. Etiologically, oral clefts have been classified into two groups, cleft lip with or without cleft palate (CL±P) and isolated cleft palate (CP). In spite of their high prevalence and clinical significance, the etiology of oral clefts in humans has not been well understood. Though a number of risk factors have been identified in epidemiological studies, most of them do not explain the majority of the cases. The need to identify novel risk factors associated with oral clefts provided the motivation for this study. The present study focused on maternal exposure to several hazardous air pollutants. A common subgroup of hazardous air pollutants is the volatile organic compounds found in petroleum derivatives. Four important hydrocarbons in this group are benzene, toluene, ethyl benzene and xylenes (BTEX). ^ The specific aim of this study was to evaluate the association between maternal exposure to environmental levels of BTEX and oral clefts among offspring in Texas for the period 1999-2008. ^ A case-control study design was used to assess if maternal exposure to BTEX increased the risk of oral clefts. The Texas Birth Defects Registry provided data on cases of non-syndromic oral clefts delivered in Texas during the period 1999-2008. Census tract level maternal exposure to BTEX concentrations were obtained from the Hazardous Air Pollutant Exposure Model (HAPEM) developed by the U.S. Environmental Protection Agency. Unconditional logistic regression was used to assess the relationship between maternal exposure to BTEX levels and risk of oral clefts in offspring. ^ In the selected population, mothers who had high estimated exposure to any of the BTEX compounds were not more likely to deliver an offspring with oral clefts. Future research efforts will focus on additional birth defects and thorough assessment of additional potential confounders.^
Resumo:
Many studies have shown relationships between air pollution and the rate of hospital admissions for asthma. A few studies have controlled for age-specific effects by adding separate smoothing functions for each age group. However, it has not yet been reported whether air pollution effects are significantly different for different age groups. This lack of information is the motivation for this study, which tests the hypothesis that air pollution effects on asthmatic hospital admissions are significantly different by age groups. Each air pollutant's effect on asthmatic hospital admissions by age groups was estimated separately. In this study, daily time-series data for hospital admission rates from seven cities in Korea from June 1999 through 2003 were analyzed. The outcome variable, daily hospital admission rates for asthma, was related to five air pollutants which were used as the independent variables, namely particulate matter <10 micrometers (μm) in aerodynamic diameter (PM10), carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2). Meteorological variables were considered as confounders. Admission data were divided into three age groups: children (<15 years of age), adults (ages 15-64), and elderly (≥ 65 years of age). The adult age group was considered to be the reference group for each city. In order to estimate age-specific air pollution effects, the analysis was separated into two stages. In the first stage, Generalized Additive Models (GAMs) with cubic spline for smoothing were applied to estimate the age-city-specific air pollution effects on asthmatic hospital admission rates by city and age group. In the second stage, the Bayesian Hierarchical Model with non-informative prior which has large variance was used to combine city-specific effects by age groups. The hypothesis test showed that the effects of PM10, CO and NO2 were significantly different by age groups. Assuming that the air pollution effect for adults is zero as a reference, age-specific air pollution effects were: -0.00154 (95% confidence interval(CI)= (-0.0030,-0.0001)) for children and 0.00126 (95% CI = (0.0006, 0.0019)) for the elderly for PM 10; -0.0195 (95% CI = (-0.0386,-0.0004)) for children for CO; and 0.00494 (95% CI = (0.0028, 0.0071)) for the elderly for NO2. Relative rates (RRs) were 1.008 (95% CI = (1.000-1.017)) in adults and 1.021 (95% CI = (1.012-1.030)) in the elderly for every 10 μg/m3 increase of PM10 , 1.019 (95% CI = (1.005-1.033)) in adults and 1.022 (95% CI = (1.012-1.033)) in the elderly for every 0.1 part per million (ppm) increase of CO; 1.006 (95%CI = (1.002-1.009)) and 1.019 (95%CI = (1.007-1.032)) in the elderly for every 1 part per billion (ppb) increase of NO2 and SO2, respectively. Asthma hospital admissions were significantly increased for PM10 and CO in adults, and for PM10, CO, NO2 and SO2 in the elderly.^
Resumo:
There is scant evidence regarding the associations between ambient levels of combustion pollutants and small for gestational age (SGA) infants. No studies of this type have been completed in the Southern United States. The main objective of the project presented was to determine associations between combustion pollutants and SGA infants in Texas using three different exposure assessments. ^ Birth certificate data that contained information on maternal and infant characteristics were obtained from the Texas Department of State Health Services (TX DSHS). Exposure assessment data for the three aims came from: (1) U.S. Environmental Protection Agency (EPA) National Air Toxics Assessment (NATA), (2) U.S. EPA Air Quality System (AQS), and (3) TX Department of Transportation (DOT), respectively. Multiple logistic regression models were used to determine the associations between combustion pollutants and SGA. ^ For the first study looked at annual estimates of four air toxics at the census tract level in the Greater Houston Area. After controlling for maternal race, maternal education, tobacco use, maternal age, number of prenatal visits, marital status, maternal weight gain, and median census tract income level, adjusted ORs and 95% confidence intervals (CI) for exposure to PAHs (per 10 ng/m3), naphthalene (per 10 ng/m3), benzene (per 1 µg/m3), and diesel engine emissions (per 10 µg/m3) were 1.01 (0.97–1.05), 1.00 (0.99–1.01), 1.01 (0.97–1.05), and 1.08 (0.95–1.23) respectively. For the second study looking at Hispanics in El Paso County, AORs and 95% confidence intervals (CI) for increases of 5 ng/m3 for the sum of carcinogenic PAHs (Σ c-PAHs), 1 ng/m3 of benzo[a]pyrene, and 100 ng/m3 in naphthalene during the third trimester of pregnancy were 1.02 (0.97–1.07), 1.03 (0.96–1.11), and 1.01 (0.97–1.06), respectively. For the third study using maternal proximity to major roadways as the exposure metric, there was a negative association with increasing distance from a maternal residence to the nearest major roadway (Odds Ratio (OR) = 0.96; 95% CI = 0.94–0.97) per 1000 m); however, once adjusted for covariates this effect was no longer significant (AOR = 0.98; 95% CI = 0.96–1.00). There was no association with distance weighted traffic density (DWTD). ^ This project is the first to look at SGA and combustion pollutants in the Southern United States with three different exposure metrics. Although there was no evidence of associations found between SGA and the air pollutants mentioned in these studies, the results contribute to the body of literature assessing maternal exposure to ambient air pollution and adverse birth outcomes. ^
Resumo:
Exposure to air pollutants in urban locales has been associated with increased risk for chronic diseases including cardiovascular disease (CVD) and pulmonary diseases in epidemiological studies. The exact mechanism explaining how air pollution affects chronic disease is still unknown. However, oxidative stress and inflammatory pathways have been posited as likely mechanisms. ^ Data from the Multi-Ethnic Study of Atherosclerosis (MESA) and the Mexican-American Cohort Study (2003-2009) were used to examine the following aims, respectively: 1) to evaluate the association between long-term exposure to ambient particulate matter (PM) (PM10 and PM2.5) and nitrogen oxides (NO x) and telomere length (TL) among approximately 1,000 participants within MESA; and 2) to evaluate the association between traffic-related air pollution with self-reported asthma, diabetes, and hypertension among Mexican-Americans in Houston, Texas. ^ Our results from MESA were inconsistent regarding associations between long-term exposure to air pollution and shorter telomere length based on whether the participants came from New York (NY) or Los Angeles (LA). Although not statistically significant, we observed a negative association between long-term air pollution exposure and mean telomere length for NY participants, which was consistent with our hypothesis. Positive (statistically insignificant) associations were observed for LA participants. It is possible that our findings were more influenced by both outcome and exposure misclassification than by the absence of a relationship between pollution and TL. Future studies are needed that include longitudinal measures of telomere length as well as focus on effects of specific constituents of PM and other pollutant exposures on changes in telomere length over time. ^ This research provides support that Mexican-American adults who live near a major roadway or in close proximity to a dense street network have a higher prevalence of asthma. There was a non-significant trend towards an increased prevalence of adult asthma with increasing residential traffic exposure especially for residents who lived three or more years at their baseline address. Even though the prevalence of asthma is low in the Mexican-origin population, it is the fastest growing minority group in the U.S. and we would expect a growing number of Mexican-Americans who suffer from asthma in the future. Future studies are needed to better characterize risks for asthma associated with air pollution in this population.^
Resumo:
Few recent estimates of childhood asthma incidence exist in the literature, although the importance of incidence surveillance for understanding asthma risk factors has been recognized. Asthma prevalence, morbidity and mortality reports have repeatedly shown that low-income children are disproportionately impacted by the disease. The aim of this study was to demonstrate the utility of Medicaid claims data for providing statewide estimates of asthma incidence. Medicaid Analytic Extract (MAX) data for Texas children ages 0-17 enrolled in Medicaid between 2004 and 2007 were used to estimate incidence overall and by age group, gender, race and county of residence. A 13+ month period of continuous enrollment was required in order to distinguish incident from prevalent cases identified in the claims data. Age-adjusted incidence of asthma was 4.26/100 person-years during 2005-2007, higher than reported in other populations. Incidence rates decreased with age, were higher for males than females, differed by race, and tended to be higher in rural than urban areas. With this study, we were able to demonstrate the utility of MAX data for estimating asthma incidence, and create a dataset of incident cases to use in further analysis. ^ In subsequent analyses, we investigated a possible association between ambient air pollutants and incident asthma among Medicaid-enrolled children in Harris County Texas between 2005 and 2007. This population is at high risk for asthma, and living in an area with historically poor air quality. We used a time-stratified case-crossover design and conditional logistic regression to calculate odds ratios, adjusted for weather variables and aeroallergens, to assess the effect of increases in ozone, NO2 and PM2.5 concentrations on risk of developing asthma. Our results show that a 10 ppb increase in ozone was significantly associated with asthma during the warm season (May-October), with the strongest effect seen when a 6-day cumulative lag period was used to compute the exposure metric (OR=1.05, 95% CI, 1.02–1.08). Similar results were seen for NO2 and PM 2.5 (OR=1.07, 95% CI, 1.03–1.11 and OR=1.12, 95% CI, 1.03–1.22, respectively). PM2.5 also had significant effects in the cold season (November-April), 5-day cumulative lag: OR=1.11, 95% CI, 1.00–1.22. When compared with children in the lowest quartile of O3 exposure, the risk for children in the highest quartile was 20% higher. This study indicates that these pollutants are associated with newly-diagnosed childhood asthma in this low-income urban population, particularly during the summer months. ^
Resumo:
This study represents a secondary analysis of the merging of emergency room visits and daily ozone and PM2.5. Although the adverse health effects of ozone and fine particulate matter have been documented in the literature, evidence regarding the health risks of these two pollutants in Harris County, Texas, is limited. Harris County (Houston) has sufficiently unique characteristics that analysis of these relationships in this setting and with the ozone and industry issues in Houston is informative. The objective of this study was to investigate the association between the joint exposure to ozone and fine particulate matter, and emergency room diagnoses of chronic obstructive pulmonary disease and cardiovascular disease in Harris County, Texas, from 2004 to 2009, with zero and one day lags. ^ The study variables were daily emergency room visits for Harris County, Texas, from 2004 to 2009, temperature, relative humidity, east wind component, north wind component, ozone, and fine particulate matter. Information about each patient's age, race, and gender was also included. The two dichotomous outcomes were emergency room visits diagnoses for chronic obstructive pulmonary disease and cardiovascular disease. Estimates of ozone and PM2.5 were interpolated using kriging, in which estimates of the two pollutants were predicted from monitoring data for every case residence zip code for every day of the six years, over 3 million estimates (one of each pollutant for each case in the database). ^ Logistic regressions were conducted to estimate odds ratios of the two outcomes. Three analyses were conducted: one for all records, another for visits during the four months of April and September of 2005 and 2009, and a third one for visits from zip codes that are close to PM2.5 monitoring stations (east area of Harris County). The last two analyses were designed to investigate special temporal and spatial characteristics of the associations. ^ The dataset included all ER visits surveyed by Safety Net from 2004 to 2009, exceeding 3 million visits for all causes. There were 95,765 COPD and 96,596 CVD cases during this six year period. A 1-μg/m3 increase in PM2.5 on the same day was associated with a 1.0% increase in the odds of chronic obstructive pulmonary disease emergency room diagnoses, a 0.4% increase in the odds of cardiovascular disease emergency room diagnoses, and a 0.2% increase in the odds of cardiovascular disease emergency room diagnoses on the following day. A 1-ppb increase in ozone was associated with a 0.1% increase in the odds of chronic obstructive pulmonary disease emergency room diagnoses on the same day. These four percentages add up to 1.7% of ER visits. That is, over the period of six years, one unit increase for both ozone and PM2.5 (joint increase), resulted in about 55,286 (3,252,102 * 0.017) extra ER visits for CVD or COPD, or 9,214 extra ER visits per year. ^ After adjustment for age, race, gender, day of the week, temperature, relative humidity, east wind component, north wind component, and wind speed, there were statistically significant associations between emergency room chronic obstructive pulmonary disease diagnosis in Harris County, Texas, with joint exposure to ozone and fine particulate matter for the same day; and between emergency room cardiovascular disease diagnosis and exposure to PM2.5 of the same day and the previous day. ^ Despite the small association between the two air pollutants and the health outcomes, this study points to important findings. Namely, the need to identify reasons for the increase of CVD and COPD ER visits over the course of the project, the statistical association between humidity (or whatever other variables for which it may serve as a surrogate) and CVD and COPD cases, and the confirmatory finding that males and blacks have higher odds for the two outcomes, as consistent with other studies. ^ An important finding of this research suggests that the number and distribution of PM2.5 monitors in Harris County - although not evenly spaced geographically—are adequate to detect significant association between exposure and the two outcomes. In addition, this study points to other potential factors that contribute to the rising incidence rates of CVD and COPD ER visits in Harris County such as population increases, patient history, life style, and other pollutants. Finally, results of validation, using a subset of the data demonstrate the robustness of the models.^
Resumo:
This cross-sectional analysis of the data from the Third National Health and Nutrition Examination Survey was conducted to determine the prevalence and determinants of asthma and wheezing among US adults, and to identify the occupations and industries at high risk of developing work-related asthma and work-related wheezing. Separate logistic models were developed for physician-diagnosed asthma (MD asthma), wheezing in the previous 12 months (wheezing), work-related asthma and work-related wheezing. Major risk factors including demographic, socioeconomic, indoor air quality, allergy, and other characteristics were analyzed. The prevalence of lifetime MD asthma was 7.7% and the prevalence of wheezing was 17.2%. Mexican-Americans exhibited the lowest prevalence of MD asthma (4.8%; 95% confidence interval (CI): 4.2, 5.4) when compared to other race-ethnic groups. The prevalence of MD asthma or wheezing did not vary by gender. Multiple logistic regression analysis showed that Mexican-Americans were less likely to develop MD asthma (adjusted odds ratio (ORa) = 0.64, 95%CI: 0.45, 0.90) and wheezing (ORa = 0.55, 95%CI: 0.44, 0.69) when compared to non-Hispanic whites. Low education level, current and past smoking status, pet ownership, lifetime diagnosis of physician-diagnosed hay fever and obesity were all significantly associated with MD asthma and wheezing. No significant effect of indoor air pollutants on asthma and wheezing was observed in this study. The prevalence of work-related asthma was 3.70% (95%CI: 2.88, 4.52) and the prevalence of work-related wheezing was 11.46% (95%CI: 9.87, 13.05). The major occupations identified at risk of developing work-related asthma and wheezing were cleaners; farm and agriculture related occupations; entertainment related occupations; protective service occupations; construction; mechanics and repairers; textile; fabricators and assemblers; other transportation and material moving occupations; freight, stock and material movers; motor vehicle operators; and equipment cleaners. The population attributable risk for work-related asthma and wheeze were 26% and 27% respectively. The major industries identified at risk of work-related asthma and wheeze include entertainment related industry; agriculture, forestry and fishing; construction; electrical machinery; repair services; and lodging places. The population attributable risk for work-related asthma was 36.5% and work-related wheezing was 28.5% for industries. Asthma remains an important public health issue in the US and in the other regions of the world. ^
Resumo:
Indoor and ambient air organic pollutants have been gaining attention because they have been measured at levels with possible health effects. Studies have shown that most airborne polychlorinated biphenyls (PCBs), pesticides and many polycyclic aromatic hydrocarbons (PAHs) are present in the free vapor state. The purpose of this research was to extend recent investigative work with polyurethane foam (PUF) as a collection medium for semivolatile compounds. Open-porous flexible PUFs with different chemical makeup and physical properties were evaluated as to their collection affinities/efficiencies for various classes of compounds and the degree of sample recovery. Filtered air samples were pulled through plugs of PUF spiked with various semivolatiles under different simulated environmental conditions (temperature and humidity), and sampling parameters (flow rate and sample volume) in order to measure their effects on sample breakthrough volume (V(,B)). PUF was also evaluated in the passive mode using organo-phosphorus pesticides. Another major goal was to improve the overall analytical methodology; PUF is inexpensive, easy to handle in the field and has excellent airflow characteristics (low pressure drop). It was confirmed that the PUF collection apparatus behaves as if it were a gas-solid chromatographic system, in that, (V(,B)) was related to temperature and sample volume. Breakthrough volumes were essentially the same using both polyether and polyester type PUF. Also, little change was observed in the V(,B)s after coating PUF with common chromatographic liquid phases. Open cell (reticulated) foams gave better recoveries than closed cell foams. There was a slight increase in (V(,B)) with an increase in the number of cells/pores per inch. The high-density polyester PUF was found to be an excellent passive and active collection adsorbent. Good recoveries could be obtained using just solvent elution. A gas chromatograph equipped with a photoionization detector gave excellent sensitivities and selectivities for the various classes of compounds investigated. ^
Resumo:
The federal regulatory regime for addressing airborne toxic pollutants functions fairly well in most of the country. However, it has proved deficient in addressing local risk issues, especially in urban areas with densely concentrated sources. The problem is especially pronounced in Houston, which is home to one of the world's biggest petrochemical complexes and a major port, both located near a large metropolitan center. Despite the fact that local government's role in regulating air toxics is typically quite limited, from 2004-2009, the City of Houston implemented a novel municipality-based air toxics reduction strategy. The initiatives ranged from voluntary agreements to litigation and legislation. This case study considers why the city chose the policy tools it did, how the tools performed relative to the designers' intentions, and how the debate among actors with conflicting values and goals shaped the policy landscape. The city's unconventional approach to controlling hazardous air pollution has not yet been examined rigorously. The case study was developed through reviews of publicly available documents and quasi-public documents obtained through public record requests, as well as interviews with key informants. The informants represented a range of experience and perspectives. They included current and former public officials at the city (including Mayor White), former Texas Commission on Environmental Quality staff, faculty at local universities, industry representatives, and environmental public health advocates. Some of the city's tools were successful in meeting their designers' intent, some were less successful. Ultimately, even those tools that did not achieve their stated purpose were nonetheless successful in bringing attention and resources to the air quality issue. Through a series of pleas and prods, the city managed to draw attention to the problem locally and get reluctant policymakers at higher levels of government to respond. This work demonstrates the potential for local government to overcome limitations in the federal regulatory regime for air toxics control, shifting the balance of local, state, and federal initiative. It also highlights the importance of flexible, cooperative strategies in local environmental protection.^