9 resultados para ACTIVATE CASPASE-1
em DigitalCommons@The Texas Medical Center
Resumo:
Dynein light chain 1 (DLC1) is a highly conserved and ubiquitously expressed protein which might have critical cellular function as total loss of DLC1 caused Drosophila embryonic death. Despite many proteins and RNAs interaction with it identified, DLC1's function(s) and regulation are largely unknown. Recently, DLC1 was identified as a physiological substrate of P21-activate kinase 1(Pak1) kinase from a human mammary cDNA library in a yeast-2-hybridization screening assay. Studies in primary human tumors and cell culture implicated that DLC1 could promote mammary cancerous phenotypes, and more importantly, Ser88 phosphorylation of DLC1by Pak1 kinase was found to be essential for DLC1's tumorigenic activities. Based on the above tissue culture studies, we hypothesized that Ser88 phosphorylation regulates DLC1. ^ To test this hypothesis, we generated two transgenic mouse models: MMTV-DLC1 and MMTV-DLC1-S88A mice with mammary specific expression of the DLC1 and DLC1-S88A cDNAs. Both of the transgenic mice mammary glands showed rare tumor incidence which indicated DLC1 alone may not be sufficient for tumorigenesis in vivo. However, these mice showed a significant alteration of mammary development. Mammary glands from the MMTV-DLC1 mice had hyperbranching and alveolar hyperplasia, with elevated cell proliferation. Intriguingly, these phenotypes were not seen in the mammary glands from the MMTV-S88A mice. Furthermore, while MMTV-DLC1 glands were normal during involution, MMTV-S88A mice showed accelerated mammary involution with increase apoptosis and altered expression of involution-associated genes. Further analysis of the MMTV-S88A glands showed they had increased steady state level of Bim protein which might be responsible for the early involution. Finally, our in vitro data showed that Ser88 phosphorylation abolished DLC1 dimer and consequently might disturb its interaction with Bim and destabilize Bim. ^ Collectively, our findings provided in vivo evidence that Ser88 phosphorylation of DLC1 can regulate DLC1's function. In addition, Ser88 phosphorylation might be critical for DLC1 dimer-monomer transition. ^
Resumo:
Growth-restricted fetuses are at risk for a variety of lifelong medical conditions. Preeclampsia, a life-threatening hypertensive disorder of pregnancy, is associated with fetuses who suffer from intrauterine growth restriction (IUGR). Recently, emerging evidence indicates that preeclamptic women harbor AT(1) receptor agonistic autoantibodies (AT(1)-AAs) that contribute to the disease features. However, the exact role of AT(1)-AAs in IUGR and the underlying mechanisms have not been identified. We report that these autoantibodies are present in the cord blood of women with preeclampsia and retain the ability to activate AT(1) receptors. Using an autoantibody-induced animal model of preeclampsia, we show that AT(1)-AAs cross the mouse placenta, enter fetal circulation, and lead to small fetuses with organ growth retardation. AT(1)-AAs also induce apoptosis in the placentas of pregnant mice, human villous explants, and human trophoblast cells. Finally, autoantibody-induced IUGR and placental apoptosis are diminished by either losartan or an autoantibody-neutralizing peptide. Thus, these studies identify AT(1)-AA as a novel causative factor of preeclampsia-associated IUGR and offer two possible underlying mechanisms: a direct detrimental effect on fetal development by crossing the placenta and entering fetal circulation, and indirectly through AT(1)-AA-induced placental damage. Our findings highlight AT(1)-AAs as important therapeutic targets.
Resumo:
The p21-activated kinase 5 (PAK5) is a serine/threonine protein kinase associated with the group 2 subfamily of PAKs. Although our understanding about PAK5 is very limited, it is receiving increasing interest due to its tissue specific expression pattern and important signaling properties. PAK5 is highly expressed in brain. Its overexpression induces neurite outgrowth in neuroblastoma cells and promotes survival in fibroblasts. ^ The serine/threonine protein kinase Raf-1 is an essential mediator of Ras-dependent signaling that controls the ERK/MAPK pathway. In contrast to PAK5, Raf-1 has been the subject of intensive investigation. However due to the complexity of its activation mechanism, the biological inputs controlling Raf-1 activation are not fully understood. ^ PAKs 1-3 are the known kinases responsible for phosphorylation of Raf-1 on serine 338, which is a crucial phosphorylation site for Raf-1 activation. However, dominant negative versions of these kinases do not block EGF-induced Raf-1 activation, indicating that other kinases may regulate the phosphorylation of Raf-1 on serine 338. ^ This thesis work was initiated to test whether the group 2 PAKs 4, 5 and 6 are responsible for EGF-induced Raf-1 activation. We found that PAK5, and to a lesser extent PAK4, can activate Raf-1 in cells. Our studies thereafter focused on PAK5. With the progress of our study we found that PAK5 does not significantly stimulate serine 338 phosphorylation of Triton X-100 soluble Raf-1. PAK5, however, constitutively and specifically associates with Raf-1 and targets it to a Triton X-100 insoluble, mitochondrial compartment, where PAK5 phosphorylates serine 338 of Raf-1. We further demonstrated that endogenous PAK5 and Raf-1 colocalize in Hela cells at the mitochondrial outer membrane. In addition, we found that the mitochondria-targeting of PAK5 is determined by its C-terminal kinase domain plus the upstream proximal region, and facilitated by the N-terminal p21 binding domain. We also demonstrated that Rho GTPases Cdc42 and RhoD associate with and regulate the subcellular localization of PAK5. Taken together, this work suggests that the mitochondria-targeting of PAK5 may link Ras and Rho GTPase-mediated signaling pathways, and sheds light on aspects of PAK5 signaling that may be important for regulating neuronal homeostasis. ^
Resumo:
Cardiovascular disease (CVD) is the leading cause of death in the United States. One manifestation of CVD known to increase mortality is an enlarged, or hypertrophic heart. Hypertrophic cardiomyocytes adapt to increased contractile demand at the genetic level with a re-emergence of the fetal gene program and a downregulation of fatty acid oxidation genes with concomitant increased reliance on glucose-based metabolism. To understand the transcriptional regulatory pathways that implement hypertrophic directives we analyzed the upstream promoter region of the muscle specific isoform of the nuclear-encoded mitochondrial gene, carnitine palmitoyltransferase-1β (CPT-1β) in cultured rat neonatal cardiac myocytes. This enzyme catalyzes the rate-limiting step of fatty acid entry into β-oxidation and is downregulated in cardiac hypertrophy and failure, making it an attractive model for the study of hypertrophic gene regulation and metabolic adaptations. We demonstrate that the muscle-enriched transcription factors GATA-4 and SRF synergistically activate CPT-1β; moreover, DNA binding to cognate sites and intact protein structure are required. This mechanism coordinates upregulation of energy generating processes with activation of the energy consuming contractile promoter for cardiac α-actin. We hypothesized that fatty acid or glucose responsive transcription factors may also regulate CPT-1β. Oleate weakly stimulates CPT-1β activity; in contrast, the glucose responsive Upstream Stimulatory Factors (USF) dramatically depresses the CPT-1β reporter. USF regulates CPT-1β through a novel physical interaction with the cofactor PGC-1 and abrogation of MEF2A/PGC-1 synergistic stimulation. In this way, USF can inversely regulate metabolic gene programs and may play a role in the shift of metabolic substrate preference seen in hypertrophy. Failing hearts have elevated expression of the nuclear hormone receptor COUP-TF. We report that COUP-TF significantly suppresses reporter transcription independent of DNA binding and specific interactions with GATA-4, Nkx2.5 or USF. In summary, CPT-1β transcriptional regulation integrates mitochondrial gene expression with two essential cardiac functions: contraction and metabolic substrate oxidation. ^
Resumo:
Under normal physiological conditions, cells of the hematopoietic system produce Interleukin-1$\beta$(IL-1$\beta)$ only when a stimulus is present. Leukemic cells, however, can constitutively produce this cytokine without an exogenous source of activation. In addition, IL-1$\beta$ can operate as an autocrine and/or paracrine growth factor for leukemic blasts. In order to study the cellular basis for this aberrant production, we analyzed two leukemic cell lines (B1 and W1) which express high levels of IL-1$\beta$ and use IL-1$\beta$ as an autocrine growth factor. Initial studies demonstrated: (1) lack of rearrangement and/or amplification in the IL-1$\beta$ gene and its promoter; and (2) intact responsiveness to regulators such as cycloheximide and dexamethasone, implying that the molecular defect was upstream. Analysis of the Ras inducible transcription factors by gel shift assay demonstrated constitutive transcription factor binding in the IL-1$\beta$ promoter. Furthermore, RAS mutations were found at codon 12 in the K-RAS and N-RAS genes in the B1 and W1 cells, respectively. To deduce the effects of activated Ras on IL-1$\beta$ expression, two classes of farnesyltransferase inhibitors and an adenoviral vector expressing antisense targeted to K-RAS were utilized. The farnesyltransferase inhibitors perillyl alcohol and B581 were able to reduce IL-1$\beta$ levels by 80% and 50% in the B1 cells, respectively. In W1 cells, IL-1$\beta$ was reduced by 60% with 1mM perillyl alcohol. Antisense RNA targeted to K-RAS confirmed the results demonstrating a 50% reduction in IL-1$\beta$ expression in the B1 cells. In addition, decreased binding at the crucial NF-IL6/CREB binding site correlated with decreased IL-1$\beta$ production and cellular proliferation implying that this site was a downstream effector of Ras signaling. Our data suggest that mutated RAS genes may be responsible for autocrine IL-1$\beta$ production in some leukemias by stimulating signal transduction pathways that activate the IL-1$\beta$ promoter. ^
Resumo:
Lipopolysaccharide (LPS) and interferon-gamma (IFN) activate macrophages and produce nitric oxide (NO) by initiating the expression of inducible Nitric Oxide Synthase (iNOS). Prolonged LPS/IFN-activation results in the death of macrophage-like RAW 264.7 cells and wild-type murine macrophages. This study was implemented to determine how NO contributes to LPS/IFN-induced macrophage death. The iNOS-specific inhibitor L-NIL protected RAW 264.7 cells from LPS/IFN-activated death, supporting a role for NO in the death of LPS/IFN-activated macrophages. A role for iNOS in cell death was confirmed in iNOS-/- macrophages which were resistant to LPS/IFN-induced death. Cell death was accompanied by nuclear condensation, caspase 3 activation, and PARP cleavage, all of which are hallmarks of apoptosis. The involvement of NO in modulating the stress-activated protein kinase (SAPK)/c-jun N-terminal kinase (JNK) signal transduction pathway was examined as a possible mechanism of LPS/IFN-mediated apoptosis. Western analysis demonstrated that NO modifies the phosphorylation profile of JNK and promotes activation of JNK in the mitochondria in RAW 264.7 cells. Inhibition of JNK with sIRNA significantly reduced cell death in RAW 264.7 cells, indicating the participation of the JNK pathway in LPS/IFN-mediated death. JNK has been demonstrated to induce mitochondrial-mediated apoptosis through modulation of Bcl-2 family members. Therefore, the effect of NO on the balance between pro- and anti-apoptotic Bcl-2 family members was examined. In RAW 264.7 cells, Bim was upregulated and phosphorylated by LPS/IFN independently of NO. However, co-immunoprecipitation studies demonstrated that NO promotes the association of Bax with the BimL splice variant. Examination of Bax phosphorylation by metabolic labeling demonstrated that Bax is basally phosphorylated and becomes dephosphorylated upon LPS/IFN treatment. L-NIL inhibited the dephosphorylation of Bax, indicating that Bax dephosphorylation is NO-dependent. NO also mediated LPS/IFN-induced downregulation of Mcl-1, an anti-apoptotic Bcl-2 family member, as demonstrated by Western blotting for Mcl-1 protein expression. Thus, NO contributes to macrophage apoptosis via a JNK-mediated mechanism involving interaction between Bax and Bim, dephosphorylation of Bax, and downregulation of Mcl-1. ^
Resumo:
Targeting the proteasome with the sole FDA approved proteasome inhibitor (PI), bortezomib, has been fruitful in specific cancers. Its success has generated an interest in next-generation PIs that might have a therapeutic advantage in cancers, such as leukemia, where bortezomib monotherapy was less effective. This study focuses on a novel, clinically relevant PI, NPI-0052. Experiments show that NPI-0052 targets chymotrypsin- and caspase-like activities more potently than the trypsin-like activity in leukemia cells. NPI-0052 induced apoptosis, as determined by caspase-3 activation and DNA fragmentation. Using caspase inhibitors and caspase-8 (I9.2) or FADD (I2.1) deficient cells revealed that caspase-8 was essential for NPI-0052-induced apoptosis. NPI-0052 killed cells via a caspase-8-tBid-mitochondrial pathway, relying on caspase-8, whereas bortezomib relies on several caspases. NPI-0052 increased reactive oxygen species (ROS) levels, which contributed towards cytotoxicity since an antioxidant conferred protection. To improve the clinical efficacy of PIs, NPI-0052 was combined with epigenetic anti-cancer agents, histone deacetylase inhibitors (HDACi). NPI-0052 with MS-275 or vorinostat (FDA approved HDACi), synergistically induced apoptosis more effectively than an HDACi/bortezomib regimen in Jurkat cells. Caspase-8 and ROS contributed towards NPI-0052/HDACi cytotoxicity and caspase-8 mediated superoxide production by NPI-0052 or NPI-0052/HDACi. The proximal targets of these agents: proteasome activity and histone acetylation were examined to determine if they contributed towards synergistic effects. HDACi targeted proteasomal β subunits and corresponding catalytic activities responsible for degrading proteins. Immunoblotting showed increases in histone-H3 expression and its acetylation with NPI-0052 or NPI-0052/HDACi in Jurkat and primary cells. Importantly, the hyper-acetylation by NPI-0052 was not detected with bortezomib, suggesting that this effect may be unique to NPI-0052. An antioxidant attenuated histone-H3 expression and acetylation induced by NPI-0052 alone or with HDACi. Furthermore, the hyper-acetylation by NPI-0052 relied on caspase-8. These novel results show that a PI is eliciting classical epigenetic alterations, demonstrated by hyper-acetylation of histone-H3. This alteration was oxidant and caspase-8 dependent. Overall, results reveal that caspase-8 mediates many effects induced by NPI-0052. Data show overlapping activities by NPI-0052 and HDACi which are contributing, along with caspase-8 activation and oxidative stress, to cytotoxic interactions in leukemia cells, reinforcing the potential clinical utility of combining these two compounds. ^
Resumo:
Stimulation of LM5 cells with the phorbol ester 4$\beta$-phorbol 12-myristate 13-acetate (PMA), causes a 2-4 fold sensitization of hormonally-stimulated adenylyl cyclase (AC) activity. This effect is thought to be due to protein kinase C (PKC)-mediated phosphorylation of either G$\sb{\rm i}$ or the catalytic subunit of AC. PKC are components of the phosphatidylinositol-4,5-bisphosphate phospholipase C (PIP$\sb2$-PLC) pathway. The currently accepted model of this pathway is that its activation by an agonist results in the production of inositol 1,4,5-triphosphate (IP$\sb3$) which causes Ca$\sp{++}$ mobilization, and 1,2-diacylglycerols (DAG) which activate PKC. Based on this model, we predicted that stimulation of purinergic and muscarinic receptors with the agonists ATP and carbachol (CCh), respectively in the LM5 cells, should sensitize AC. Surprisingly we found that only stimulation of the purinergic receptors in these cells caused a sensitization of PGE$\sb1$-stimulated AC measured in cell-free assays.^ We hypothesized that ATP-and CCh-stimulated differential DAG production contributes to the effectiveness of these two agonists to sensitize PGE$\sb1$-stimulated AC activity. To test this hypothesis directly, we performed a combined high-performance liquid chromatography and gas-liquid chromatography analysis of the DAG produced in the LM5 cells in response to stimulation with ATP and CCh.^ We found that both ATP and CCh increased levels of 23 species of DAG. Relative to the control levels (0.261 nmol DAG/100 nmol phospholipid) the CCh-induced increase in DAG levels was 280% (0.738 $\pm$ 0.051 nmol DAG/100 nmol phospholipid) whereas the ATP-induced levels increased 180% (0.441 t 0.006 nmol DAG/100 nmol phospholipid). Neither agonist created new species or eliminated the existing ones. The major species which comprised $\approx$50% of the total cellular DAG in all of the groups were 16:0-18:1, 18:0-18:1, 18:1-18:1, and 18:0-20:4. CCh was more effective than ATP at stimulating these major DAG species.^ It is concluded that factor(s) other than DAG contribute(s) to the differences between ATP-and CCh-sensitization of PGE$\sb1$-stimulated AC activity in the LM5 cells. ^
Resumo:
TNF-α is a pleiotropic cytokine involved in normal homeostasis and plays a key role in defending the host from infection and malignancy. However when deregulated, TNF-α can lead to various disease states. Therefore, understanding the mechanisms by which TNF-α is regulated may aid in its control. In spite of the knowledge gained regarding the transcriptional regulation of TNF-α further characterization of specific TNF-α promoter elements remains to be elucidated. In particular, the T&barbelow;NF-α A&barbelow;P-1/C&barbelow;RE-like (TAC) element of the TNF-α promoter has been shown to be important in the regulation of TNF-α in lymphocytes. Activating transcription factor-2 (ATF-2) and c-Jun were shown to bind to and transactivate the TAC element However, the role of TAC and transcription factors ATF-2 and c-Jun in the regulation of TNF-α in monocytes is not as well characterized. Lipopolysaccharide (LPS), a potent activator of TNF-α in monocytes, provides a good model to study the involvement of TAC in TNF-α regulation. On the other hand, all-tram retinoic acid (ATRA), a physiological monocyte-differentiation agent, is unable to induce TNF-α protein release. ^ To delineate the functional role of TAC, we transfected the wildtype or the TAC deleted TNF-α promoter-CAT construct into THP-1 promonocytic cells before stimulating them with LPS. CAT activity was induced 17-fold with the wildtype TNF-α promoter, whereas the CAT activity was uninducible when the TAC deletion mutant was used. This daft suggests that TAC is vital for LPS to activate the TNF-α promoter. Electrophoretic mobility shift assays using the TAC element as a probe showed a unique pattern for LPS-activated cells: the disappearance of the upper band of a doublet seen in untreated and ATRA treated cells. Supershift analysis identified c-Jun and ATF-2 as components of the LPS-stimulated binding complex. Transient transfection studies using dominant negative mutants of JNK, c-Jun, or ATF-2 suggest that these proteins we important for LPS to activate the TNF-α promoter. Furthermore, an increase in phosphorylated or activated c-Jun was bound to the TAC element in LPS-stimulated cells. Increased c-Jun activation was correlated with increased activity of Jun N-terminal kinase (JNK), a known upstream stimulator of c-Jun and ATF-2, in LPS-stimulated monocytes. On the other hand, ATRA did not induce TNF-α protein release nor changes in the phosphorylation of c-Jun or JNK activity, suggesting that pathways leading to ATRA differentiation of monocytic cells are independent of TNF-α activation. Together, the induction of TNF-α gene expression seems to require JNK activation, and activated c-Jun binding to the TAC element of the TNF-α promoter in THP-1 promonocytic cells. ^