12 resultados para 750902 Understanding the pasts of other societies

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inability to maintain genomic stability and control proliferation are hallmarks of many cancers, which become exacerbated in the presence of unrepaired DNA damage. Such genotoxic stresses trigger the p53 tumor suppressor network to activate transient cell cycle arrest allowing for DNA repair; if the damage is excessive or irreparable, apoptosis or cellular senescence is triggered. One of the major DNA repair pathway that mends DNA double strand breaks is non-homologous end joining (NHEJ). Abrogating the NHEJ pathway leads to an accumulation of DNA damage in the lymphoid system that triggers p53-mediated apoptosis; complete deletion of p53 in this system leads to aggressive lymphomagenesis. Therefore, to study the effect of p53-dependent cell cycle arrest, we utilized a hypomorphic, separation-of-function mutant, p53p/p, which completely abrogates apoptosis yet retains partial cell cycle arrest ability. We crossed DNA ligase IV deficiency, a downstream ligase crucial in mending breaks during NHEJ, into the p53p/p background (Lig4-/-p53p/p). The accumulation of DNA damage activated the p53/p21 axis to trigger cellular senescence in developing lymphoid cells, which absolutely suppressed tumorigenesis. Interestingly, these mice progressively succumb to severe diabetes. Mechanistic analysis revealed that spontaneous DNA damage accumulated in the pancreatic b-cells, a unique subset of endocrine cells solely responsible for insulin production to regulate glucose homeostasis. The genesis of adult b-cells predominantly occurs through self-replication, therefore modulating cellular proliferation is an essential component for renewal. The progressive accumulation of DNA damage, caused by Lig4-/-, activated p53/p21-dependent cellular senescence in mutant pancreatic b-cells that lead to islet involution. Insulin levels subsequently decreased, deregulating glucose homeostasis driving overt diabetes. Our Lig4-/-p53p/p model aptly depicts the dichotomous role of cellular senescence—in the lymphoid system prevents tumorigenesis yet in the endocrine system leads to the decrease of insulin-producing cells causing diabetes. To further delineate the function of NHEJ in pancreatic b-cells, we analyzed mice deficient in another component of the NHEJ pathway, Ku70. Although most notable for its role in DNA damage recognition and repair within the NHEJ pathway, Ku70 has NHEJ-independent functions in telomere maintenance, apoptosis, and transcriptional regulation/repression. To our surprise, Ku70-/-p53p/p mutant mice displayed a stark increase in b-cell proliferation, resulting in islet expansion, heightened insulin levels and hypoglycemia. Augmented b-cell proliferation was accompanied with the stabilization of the canonical Wnt pathway, responsible for this phenotype. Interestingly, the progressive onset of cellular senescence prevented islet tumorigenesis. This study highlights Ku70 as an important modulator in not only maintaining genomic stability through NHEJ-dependent functions, but also reveals a novel NHEJ-independent function through regulation of pancreatic b-cell proliferation. Taken in aggregate, these studies underscore the importance for NHEJ to maintain genomic stability in b-cells as well as introduces a novel regulator for pancreatic b-cell proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurement of the absorbed dose from ionizing radiation in medical applications is an essential component to providing safe and reproducible patient care. There are a wide variety of tools available for measuring radiation dose; this work focuses on the characterization of two common, solid-state dosimeters in medical applications: thermoluminescent dosimeters (TLD) and optically stimulated luminescent dosimeters (OSLD). There were two main objectives to this work. The first objective was to evaluate the energy dependence of TLD and OSLD for non-reference measurement conditions in a radiotherapy environment. The second objective was to fully characterize the OSLD nanoDot in a CT environment, and to provide validated calibration procedures for CT dose measurement using OSLD. Current protocols for dose measurement using TLD and OSLD generally assume a constant photon energy spectrum within a nominal beam energy regardless of measurement location, tissue composition, or changes in beam parameters. Variations in the energy spectrum of therapeutic photon beams may impact the response of TLD and OSLD and could thereby result in an incorrect measure of dose unless these differences are accounted for. In this work, we used a Monte Carlo based model to simulate variations in the photon energy spectra of a Varian 6MV beam; then evaluated the impact of the perturbations in energy spectra on the response of both TLD and OSLD using Burlin Cavity Theory. Energy response correction factors were determined for a range of conditions and compared to measured correction factors with good agreement. When using OSLD for dose measurement in a diagnostic imaging environment, photon energy spectra are often referenced to a therapy-energy or orthovoltage photon beam – commonly 250kVp, Co-60, or even 6MV, where the spectra are substantially different. Appropriate calibration techniques specifically for the OSLD nanoDot in a CT environment have not been presented in the literature; furthermore the dependence of the energy response of the calibration energy has not been emphasized. The results of this work include detailed calibration procedures for CT dosimetry using OSLD, and a full characterization of this dosimetry system in a low-dose, low-energy setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the principles of calmodulin (CaM) activation of target enzymes will help delineate how this seemingly simple molecule can play such a complex role in transducing Ca (2+)-signals to a variety of downstream pathways. In the work reported here, we use biochemical and biophysical tools and a panel of CaM constructs to examine the lobe specific interactions between CaM and CaMKII necessary for the activation and autophosphorylation of the enzyme. Interestingly, the N-terminal lobe of CaM by itself was able to partially activate and allow autophosphorylation of CaMKII while the C-terminal lobe was inactive. When used together, CaMN and CaMC produced maximal CaMKII activation and autophosphorylation. Moreover, CaMNN and CaMCC (chimeras of the two N- or C-terminal lobes) both activated the kinase but with greater K act than for wtCaM. Isothermal titration calorimetry experiments showed the same rank order of affinities of wtCaM > CaMNN > CaMCC as those determined in the activity assay and that the CaM to CaMKII subunit binding ratio was 1:1. Together, our results lead to a proposed sequential mechanism to describe the activation pathway of CaMKII led by binding of the N-lobe followed by the C-lobe. This mechanism contrasts the typical sequential binding mode of CaM with other CaM-dependent enzymes, where the C-lobe of CaM binds first. The consequence of such lobe specific binding mechanisms is discussed in relation to the differential rates of Ca (2+)-binding to each lobe of CaM during intracellular Ca (2+) oscillations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research examines the graduation rate experienced by students receiving public education services in the state of Texas. Special attention is paid to that subgroup of Texas students who meet Texas Education Agency criteria for handicapped status. The study is guided by two research questions: What are the high school completion rates experienced by handicapped and nonhandicapped students attending Texas public schools? and What are the predictors of graduation for handicapped and nonhandicapped students?^ In addition, the following hypotheses are explored. Hypothesis 1: Handicapped students attending a Texas public school will experience a lower rate of high school completion than their nonhandicapped counterparts. Hypothesis 2: Handicapped and nonhandicapped students attending school in a Texas public school with a budget above the median budget for Texas public schools will experience a higher rate of high school completion than similar students in Texas public schools with a budget below the median budget. Hypothesis 3: Handicapped and nonhandicapped students attending school in large Texas urban areas will experience a lower rate of high school completion than similar students in Texas public schools in rural areas. Hypothesis 4: Handicapped and nonhandicapped students attending a Texas public school in a county which rates above the state median for food stamps and AFDC recipients will experience a lower rate of high school completion than students living in counties below the median.^ The study will employ extant data from the records of the Texas Education Agency for the 1988-1989 and the 1989-1990 school years, from the Texas Department of Health for the years of 1989 and 1990, and from the 1980 Census.^ The study reveals that nonhandicapped students are graduating with a two year average rate of.906, while handicapped students following an Individualized Educational Program (IEP) achieve a two year average rate of.532, and handicapped students following the regular academic program present a two year average graduation rate of only.371. The presence of other handicapped students, and the school district's average expense per student are found to contribute significantly to the completion rates of handicapped students. Size groupings are used to elucidate the various impacts of these variables on different school districts and different student groups.^ Conclusions and implications are offered regarding the need to reach national consensus on the definition and computation of high school completion for both handicapped and nonhandicapped students, and the need for improved statewide tracking of handicapped completion rates. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Food and Drug Administration (FDA) is responsible for risk assessment and risk management in the post-market surveillance of the U.S. medical device industry. One of the FDA regulatory mechanisms, the Medical Device Reporting System (MDR) is an adverse event reporting system intended to provide the FDA with advance warning of device problems. It includes voluntary reporting for individuals, and mandatory reporting for device manufacturers. ^ In a study of alleged breast implant safety problems, this research examines the organizational processes by which the FDA gathers data on adverse events and uses adverse event reporting systems to assess and manage risk. The research reviews the literature on problem recognition, risk perception, and organizational learning to understand the influence highly publicized events may have on adverse event reporting. Understanding the influence of an environmental factor, such as publicity, on adverse event reporting can provide insight into the question of whether the FDA's adverse event reporting system operates as an early warning system for medical device problems. ^ The research focuses on two main questions. The first question addresses the relationship between publicity and the voluntary and mandatory reporting of adverse events. The second question examines whether government agencies make use of these adverse event reports. ^ Using quantitative and qualitative methods, a longitudinal study was conducted of the number and content of adverse event reports regarding breast implants filed with the FDA's medical device reporting system during 1985–1991. To assess variation in publicity over time, the print media were analyzed to identify articles related to breast implant failures. ^ The exploratory findings suggest that an increase in media activity is related to an increase in voluntary reporting, especially following periods of intense media coverage of the FDA. However, a similar relationship was not found between media activity and manufacturers' mandatory adverse event reporting. A review of government committee and agency reports on the FDA published during 1976–1996 produced little evidence to suggest that publicity or MDR information contributed to problem recognition, agenda setting, or the formulation of policy recommendations. ^ The research findings suggest that the reporting of breast implant problems to FDA may reflect the perceptions and concerns of the reporting groups, a barometer of the volume and content of media attention. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite increasing interest in the relationship between socioeconomic position (SEP) and health, there remains little understanding of the mechanisms through which SEP is related to chronic disease. This dissertation utilized data from 2,592 U.S. households in the 1995 telephone survey of the Aging, Status, and the Sense of Control study to: (1) investigate potential mediating factors in the association between educational level and prevalence of diabetes and (2) to investigate the association between the three major measures of SEP—income, education, and occupation—and the prevalence of diabetes. Regression analyses were conducted to examine the degree to which sense of personal control and social support mediate the association between level of educational attainment and diabetes and to examine the contribution of each of the SEP measures to diabetes. After adjusting for age, obesity, sex, and race, respondents with less than a high school education had greater odds of having diabetes than those with a college degree or higher level of educational attainment, although the corresponding confidence interval contained the null value (OR = 1.2, 95% CI: 0.7, 2.0). Neither sense of control nor social support significantly mediated the association between education and diabetes. However, sense of control was associated with diabetes status (OR = 0.7, 95% CI: 0.5, 1.0). Compared with income and education, employment status was the most strongly associated measure of SEP with diabetes prevalence. After adjusting for age, obesity, sex, and race, respondents who were unable to work due to disability had fourfold greater odds of having diabetes than those who were employed full time (OR = 4.0; 95% CI: 1.9, 8.3). Adding income and/or education to the model did not improve the fit. Understanding the impact of socioeconomic factors on diabetes requires consideration of multiple measures of SEP as well as the psychosocial pathways through which SEP may influence diabetes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One growth factor receptor commonly altered during prostate tumor progression is the epidermal growth factor receptor (EGFR). EGFR signaling regulates Erk1/2 phosphorylation through multiple mechanisms. We hypothesized that PKC isozymes play a role in EGFR-dependent signaling, and that through PKC isozyme selective inhibition, EGFR-dependent Erk1/2 activation can be attenuated in AICaP cells. ^ To test the hypothesis, PKC activation was induced by 12-O-tetradecanoyi-phorbol-13-acetate (TPA) in PC-3 cells. As a result, Erk1/2 was activated similarly to what was observed upon EGF stimulation. EGF-induced Erk1/2 activation in PC-3 cells was PKC-dependent, as demonstrated through use of a selective PKC inhibitor, GF109203X. This provides evidence for PKC regulatory control over Erk1/2 signaling downstream of EGFR. Next, we demonstrated that when PKC was inhibited by GF109203X, EGF-stimulated Erk1/2 activation was inhibited in PC-3, but not DU145 cells. TPA-stimulated Erk1/2 activation was EGFR-dependent in both DU145 and PC-3 cells, demonstrated through abrogation of Erk1/2 activation by a selective EGFR inhibitor AG1478. These data support PKC control at or upstream of EGFR in AICaP cells. We observed that interfering with ligand/EGFR binding abrogated Erk1/2 signaling in TPA-stimulated cells, revealing a role for PKC upstream of EGFR. ^ Next, we determined which PKC isozymes might be responsible for Erk1/2 regulation. We first determined that human AICaP cell lines express the same PKC isozymes as those observed in clinical prostate cancer specimens (α, ϵ, &zgr;, ι and PKD). Isozyme-selective methods were employed to characterize discrete PKC isozyme function in EGFR-dependent Erk1/2 activation. Pharmacologic inhibitors implicated PKCα in TPA-induced EGFR-dependent Erk1/2 activation in both PC-3 and DU145 cells. Further, the cPKC-specific inhibitor, Gö6976 decreased viablilty of DU145 cells, providing evidence that PKCα is necessary for growth and survival. Finally, resveratrol, a phytochemical with strong cancer therapeutic potential inhibited Erk1/2 activation, and this correlated with selective inhibition of PKCα. These results demonstrate that PKC regulates pathways critical to progression of CaP cells, including those mediated by EGFR. Thus, PKC isozyme-selective targeting is an attractive therapeutic strategy, and understanding the role of specific PKC isozymes in CaP cell growth and survival may aid in development of effective, non-toxic PKC-targeted therapies. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formation of the FtsZ ring (Z ring) in Escherichia coli is the first step in assembly of the divisome, a molecular machine composed of 14 known proteins which are all required for cell division. Although the biochemical functions of most divisome proteins are unknown, several of these have overlapping roles in ensuring that the Z ring assembles at the cytoplasmic membrane and is active. ^ We identified a single amino acid change in FtsA, R286W, renamed FtsA*, that completely bypasses the requirement for ZipA in cell division. This and other data suggest that FtsA* is a hyperactive form of FtsA that can replace the multiple functions normally assumed by ZipA, which include stabilization of Z rings, recruitment of downstream cell division proteins, and anchoring the Z ring to the membrane. This is the first example of complete functional replacement of an essential prokaryotic cell division protein by another. ^ Cells expressing ftsA* with a complete deletion of ftsK are viable and divide, although many of these ftsK null cells formed multiseptate chains, suggesting a role in cell separation for FtsK. In addition, strains expressing extra ftsAZ, ftsQ, ftsB, zipA or ftsN, were also able to survive and divide in the absence of ftsK. The cytoplasmic and transmembrane domains of FtsQ were sufficient to allow viability and septum formation to ftsK deleted strains. These findings suggest that FtsK is normally involved in stabilizing the divisome and shares functional overlap with other cell division proteins. ^ As well as permitting the removal of other divisome components, the presence of FtsA* in otherwise wild-type cells accelerated Z-ring assembly, which resulted in a significant decrease in the average length of cells. In support of its role in Z-ring stability, FtsA* suppressed the cell division inhibition caused by overexpressing FtsZ. FtsA* did not affect FtsZ turnover within the Z ring as measured by fluorescence recovery after photobleaching. Turnover of FtsA* in the ring was somewhat faster than wild-type FtsA. Yeast two-hybrid data suggest that FtsA* has an increased affinity for FtsZ relative to wild-type FtsA. These results indicate that FtsA* interacts with FtsZ more strongly, and its enhancement of Z ring assembly may explain why FtsA* can permit survival of cells lacking ZipA or FtsK.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interactions between neoplastic cells and the host stroma play a role in both tumor cell migration and proliferation. Stromal cells provide structural support for malignant cells, modulate the tumor microenvironment, and influence phenotypic behavior as well as the aggressiveness of the malignancy. In response, the tumor provides growth factors, cytokines, and cellular signals that continually initiate new stromal reactions and recruit new cells into the microenvironment to further support tumor growth. Since growing tumors recruit local cells, as well as supplemental cells from the circulation, such as fibroblasts and endothelial precursors, the question arises if it would be possible to access circulating stromal cells to modify the tumor microenvironment for therapeutic benefits. One such cell type, mesenchymal stem cells (MSC), could theoretically be engrafted into stroma. MSC are pluripotent cells that have been shown to form stromal elements such as myofibroblasts, perivascular tissues and connective tissues. Several reports have demonstrated that MSC can incorporate into sites of wound healing and tissue repair, due to active tissue remodeling and local paracrine factors, and given the similarity between wound healing and the carcinoma induced stromal response one can hypothesize that MSC have the potential to be recruited to sites of tumor development. In addition, gene-modified MSC could be used as cellular vehicles to deliver gene products into tumors. My results indicate that MSC home to and participate in tumor stroma formation in ovarian tumor xenografts in mice. Additionally, once homed to tumor beds, MSC proliferate rapidly and integrate. My studies aim at understanding the fate of MSC in the tumor microenvironment, as well as utilizing them for cellular delivery of therapeutic genes into the stroma of ovarian carcinomas. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasmacytoid dendritic cells (pDCs) selectively express TLR7 which allows them to respond to RNA viruses and TLR9 which allows them to respond to DNA viruses and CpG oligonucleotides. Upon exposure to virus pDCs produce vast amounts of type I interferon (IFN) directly inhibiting viral replication and contributing to the activation of other immune cells. The ability of pDCs to promote B and T cell differentiation through type I IFN has been well documented although the role of additional factors including tumor necrosis factor (TNF) family members has not been thoroughly addressed. Here the expression of selected TNF family members in pDCs was examined and the role of TNF receptor-ligand interactions in the regulation of B and T lymphocyte growth and differentiation by pDCs was investigated. Upon stimulation with CpG-B, pDCs exhibit strong and stable expression of CD70, a TNF family ligand that binds to its receptor CD27 on memory B cells and promotes plasma cell differentiation and Ig secretion. Using an in vitro pDC/B cell co-culture system, it was determined that CpG-B-stimulated pDCs induce the proliferation of CD40L-activated human peripheral B cells and Ig secretion. This occurs independently of IFN and residual CpG, and requires physical contact between pDCs and B cells. CpG-stimulated pDCs induce the proliferation of both naive and memory B cells although Ig secretion is restricted to the memory subset. Blocking the interaction of CD70 with CD27 using an antagonist anti-CD70 antibody reduces the induction of B cell proliferation and IgG secretion by CpG-B-stimulated pDCs. Published studies have also indicated an important role for CD70 in promoting the expansion of CD4+ and CD8+ T cells and the development of effector function. CpG-B-stimulated pDCs induce naïve CD4+ T cell proliferation and production of multiple cytokines including IFN-γ, TNF-α, IL-10, IL-4, IL-5 and IL-13. Blocking the function of CD70 with an antagonist anti-CD70 antibody significantly reduced the induction of naïve CD4+ T cell proliferation by CpG-B-stimulated pDCs and the production of IL-4 and IL-13. Collectively these data indicate an important role for CD70 in the regulation of B and T lymphocyte growth and differentiation by pDCs. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dental caries lead to children being less ready to learn and results in diminished productivity in the classroom. Tooth decay causes pain and infection, leading to impaired chewing, speech, and facial expression, in addition to a loss in self-esteem. There have been many studies supporting the safety and efficacy of community water fluoridation in reducing dental caries. Water fluoridation has been identified by the Centers for Disease Control and Prevention as one of 10 great public health achievements of the 20th century. The decline in the prevalence and severity of tooth decay in the United States during the past 60 years has been attributed largely to the increased use of fluoride; in particular, the widespread utilization of community water fluoridation. However, in the decades since fluoridation was first introduced, reductions in dental caries have declined, most likely due to the presence of other sources of fluoride. Questions have been raised regarding the need to continue to fluoridate community water supplies in the face of possible excessive exposure to fluoride. Nevertheless, dental caries continue to be a significant public health burden throughout the world, including the United States, especially among low-income and disadvantaged populations. Although many poor children receive their dental care through Medicaid, the percentage of Texas children with untreated dental caries continues to exceed the U.S. average and is well above Healthy People 2010 goals, even as state Medicaid expenditures continue to rise. The objective of this study is to determine the relationship between Medicaid dental expenditures and community water fluoridation levels in Texas counties. By examining this relationship, the cost-effectiveness of community water fluoridation in the Texas pediatric Medicaid beneficiary population, as measured by publicly financed dental care expenditures, may be ascertained.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study provides a review of the current alcoholism planning process of the Houston-Galveston planning process of the Houston-Galveston Area Council, an agency carrying out planning for a thirteen county region in surrounding Houston, Texas. The four central groups involved in this planning are identified, and the role that each plays and how it effects the planning outcomes is discussed.^ The most substantive outcome of the Houston-Galveston Area Council's alcoholism planning, the Regional Alcoholism/Alcohol Abuse Plan is examined. Many of the shortcomings in the data provided, and the lack of other data necessary for planning are offered.^ A problem oriented planning model is presented as an alternative to the Houston-Galveston Area Council's current service oriented approach to alcoholism planning. Five primary phases of the model, identification of the problem, statement of objectives, selection of alternative programs, implementation, and evaluation, are presented, and an overview of the tasks involved in the application of this model to alcoholism planning is offered.^ A specific aspect of the model, the use of problem status indicators is explored using cirrhosis and suicide mortality data. A review of the literature suggests that based on five criteria, availability, subgroup identification, validity, reliability, and sensitivity, both suicide and cirrhosis are suitable as indicators of the alcohol problem when combined with other indicators.^ Cirrhosis and suicide mortality data are examined for the thirteen county Houston-Galveston Region for the years 1969 through 1976. Data limitations preclude definite conclusions concerning the alcohol problem in the region. Three hypotheses about the nature of the regional alcohol problem are presented. First, there appears to be no linear trend in the number of alcoholics that are at risk of suicide and cirrhosis mortality. Second, the number of alcoholics in the metropolitan areas seems to be greater than the number of rural areas. Third, the number of male alcoholics at risk of cirrhosis and suicide mortality is greater than the number of female alcoholics.^