1 resultado para 694

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: An increased understanding of the pathogenesis of cancer at the molecular level has led to the development of personalized cancer therapy based on the mutation status of the tumor. Tailoring treatments to genetic signatures has improved treatment outcomes in patients with advanced cancer. We conducted a meta-analysis to provide a quantitative summary of the response to treatment on a phase I clinical trial matched to molecular aberration in patients with advanced solid tumors. ^ Methods: Original studies that reported the results of phase I clinical trials in patients with advanced cancer treated with matched anti-cancer therapies between January 2006 and November 2011 were identified through an extensive search of Medline, Embase, Web of Science and Cochrane Library databases. Odds Ratio (OR) with 95% confidence interval (CI) was estimated for each study to assess the strength of an association between objective response rate (ORR) and mutation status. Random effects model was used to estimate the pooled OR and their 95% CI was derived. Funnel plot was used to assess publication bias. ^ Results: Thirteen studies published between January 2006 and November 2011that reported on responses to matched phase I clinical trials in patients with advanced cancer were included in the meta-analysis. Nine studies reported on the responses seen in 538 of the 835 patients with driver mutations responsive to therapy and seven studies on the responses observed in 234 of the 306 patients with mutation predictive for negative response. Random effects model was used to estimate pooled OR, which was 7.767(95% CI = 4.199 − 14.366; p-value=0.000) in patients with activating mutations that were responsive to therapy and 0.287 (95% CI = 0.119 − 0.694; p-value=0.009) in patients with mutation predictive of negative response. ^ Conclusion: It is evident from the meta-analysis that somatic mutations present in tumor tissue of patients are predictive of responses to therapy in patients with advanced cancer in phase I setting. Plethora of research and growing evidence base indicate that selection of patients based on mutation analysis of the tumor and personalizing therapy is a step forward in the war against cancer.^