3 resultados para 670205 Other fibre processing and textiles
em DigitalCommons@The Texas Medical Center
Resumo:
Considerable evidence suggests that central cholinergic neurons participate in either acquisition, storage or retrieval of information. Experiments were designed to evaluate information processing in mice following either reversible or irreversible impairment in central cholinergic activity. The cholinergic receptor antagonists, atropine and methylatropine were used to reversibly inhibit cholinergic transmission. Irreversible impairment in central cholinergic function was achieved by central administration of the cholinergic-specific neurotoxins, N-ethyl-choline aziridinium (ECA) and N-ethyl-acetylcholine aziridinium (EACA).^ ECA and EACA appear to act by irreversible inhibition of high affinity choline uptake (proposed rate-limiting step in acetylcholine synthesis). Intraventricular administration of ECA or EACA produced persistent reduction in hippocampal choline acetyltransferase activity. Other neuronal systems and brain regions showed no evidence of toxicity.^ Mice treated with either ECA or EACA showed behavioral deficits associated with cholinergic dysfunction. Passive avoidance behavior was significantly impaired by cholinotoxin treatment. Radial arm maze performance was also significantly impaired in cholinotoxin-treated animals. Deficits in radial arm maze performance were transient, however, such that rapid and apparent complete behavioral recovery was seen during retention testing. The centrally active cholinergic receptor antagonist atropine also caused significant impairment in radial arm maze behavior, while equivalent doses of methylatropine were without effect.^ The relative effects of cholinotoxin and receptor antagonist treatment on short-term (working) memory and long-term (reference) memory in radial arm maze behavior were examined. Maze rotation studies indicated that there were at least two different response strategies which could result in accurate maze performance. One strategy involved the use of response algorithms and was considered to be a function of reference memory. Another strategy appeared to be primarily dependent on spatial working memory. However, all behavioral paradigms with multiple trails have reference memory requirements (i.e. information useful over all trials). Performance was similarly affected following either cholinotoxin or anticholinergic treatment, regardless of the response strategy utilized. In addition, rates of behavioral recovery following cholinotoxin treatment were similar between response groups. It was concluded that both cholinotoxin and anticholinergic treatment primarily resulted in impaired reference memory processes. ^
Resumo:
Many mental disorders disrupt social skills, yet few studies have examined how the brain processes social information. Functional neuroimaging, neuroconnectivity and electrophysiological studies suggest that orbital frontal cortex plays important roles in social cognition, including the analysis of information from faces, which are important cues in social interactions. Studies in humans and non-human primates show that damage to orbital frontal cortex produces social behavior impairments, including abnormal aggression, but these studies have failed to determine whether damage to this area impairs face processing. In addition, it is not known whether damage early in life is more detrimental than damage in adulthood. This study examined whether orbital frontal cortex is necessary for the discrimination of face identity and facial expressions, and for appropriate behavioral responses to aggressive (threatening) facial expressions. Rhesus monkeys (Macaca mulatta) received selective lesions of orbital frontal cortex as newborns or adults. As adults, these animals were compared with sham-operated controls on their ability to discriminate between faces of individual monkeys and between different facial expressions of emotion. A passive visual paired-comparison task with standardized rhesus monkey face stimuli was designed and used to assess discrimination. In addition, looking behavior toward aggressive expressions was assessed and compared with that of normal control animals. The results showed that lesion of orbital frontal cortex (1) may impair discrimination between faces of individual monkeys, (2) does not impair facial expression discrimination, and (3) changes the amount of time spent looking at aggressive (threatening) facial expressions depending on the context. The effects of early and late lesions did not differ. Thus, orbital frontal cortex appears to be part of the neural circuitry for recognizing individuals and for modulating the response to aggression in faces, and the plasticity of the immature brain does not allow for recovery of these functions when the damage occurs early in life. This study opens new avenues for the assessment of rhesus monkey face processing and the neural basis of social cognition, and allows a better understanding of the nature of the neuropathology in patients with mental disorders that disrupt social behavior, such as autism. ^
Resumo:
Clinical text understanding (CTU) is of interest to health informatics because critical clinical information frequently represented as unconstrained text in electronic health records are extensively used by human experts to guide clinical practice, decision making, and to document delivery of care, but are largely unusable by information systems for queries and computations. Recent initiatives advocating for translational research call for generation of technologies that can integrate structured clinical data with unstructured data, provide a unified interface to all data, and contextualize clinical information for reuse in multidisciplinary and collaborative environment envisioned by CTSA program. This implies that technologies for the processing and interpretation of clinical text should be evaluated not only in terms of their validity and reliability in their intended environment, but also in light of their interoperability, and ability to support information integration and contextualization in a distributed and dynamic environment. This vision adds a new layer of information representation requirements that needs to be accounted for when conceptualizing implementation or acquisition of clinical text processing tools and technologies for multidisciplinary research. On the other hand, electronic health records frequently contain unconstrained clinical text with high variability in use of terms and documentation practices, and without commitmentto grammatical or syntactic structure of the language (e.g. Triage notes, physician and nurse notes, chief complaints, etc). This hinders performance of natural language processing technologies which typically rely heavily on the syntax of language and grammatical structure of the text. This document introduces our method to transform unconstrained clinical text found in electronic health information systems to a formal (computationally understandable) representation that is suitable for querying, integration, contextualization and reuse, and is resilient to the grammatical and syntactic irregularities of the clinical text. We present our design rationale, method, and results of evaluation in processing chief complaints and triage notes from 8 different emergency departments in Houston Texas. At the end, we will discuss significance of our contribution in enabling use of clinical text in a practical bio-surveillance setting.