3 resultados para 655
em DigitalCommons@The Texas Medical Center
Resumo:
A strain of Saccaromyces cerevisiae (SC3B) with a temperature sensitive defect in the synthesis of DNA has been isolated. This defect is due to a single recessive mutation in a gene named INS1 required for the initiation of S phase. Arrested cells carrying the ins1$\sp{ts}$ allele are defective in the completion of G1 to S phase transition events including SPB duplication or separation, initiation of DNA synthesis, normal control of budding, and bud neck stability. The mutation and a gene which complements the mutation were mapped to chromosome IV. The complementing gene was proved to be the wild type allele of the temperature sensitive mutation by genetic linkage of an integrated clone. A very low abundance 4.2 kb RNA message was observed in the strain SC3B which increased greatly in this strain transformed with a multiple copy plasmid carrying the complementing clone. The wild type gene was sequenced and found to encode a 1268 amino acid protein of with a molecular weight of 142,655 Daltons. Computer assisted searches for similar DNA sequences revealed no significant homology matches. However, searches for protein sequence homology revealed a protein (the DIS3 gene product of S. pombe) with a similar sequence over a 534 amino acid stretch to the predicted INS1 gene product. A later search revealed a near identical sequence for a gene (SRK1) also isolated from S. cerevisiae. ^
Resumo:
The purpose of this dissertation was to estimate HIV incidence among the individuals who had HIV tests performed at the Houston Department of Health and Human Services (HDHHS) public health laboratory, and to examine the prevalence of HIV and AIDS concurrent diagnoses among HIV cases reported between 2000 and 2007 in Houston/Harris County. ^ The first study in this dissertation estimated the cumulative HIV incidence among the individuals testing at Houston public health laboratory using Serologic Testing Algorithms for Recent HIV Seroconversion (STARHS) during the two year study period (June 1, 2005 to May 31, 2007). The HIV incidence was estimated using two independently developed statistical imputation methods, one developed by the Centers for Disease Control and Prevention (CDC), and the other developed by HDHHS. Among the 54,394 persons who tested for HIV during the study period, 942 tested HIV positive (positivity rate=1.7%). Of these HIV positives, 448 (48%) were newly reported to the Houston HIV/AIDS Reporting System (HARS) and 417 of these 448 blood specimens (93%) were available for STARHS testing. The STARHS results showed 139 (33%) out of the 417 specimens were newly infected with HIV. Using both the CDC and HDHHS methods, the estimated cumulative HIV incidences over the two-year study period were similar: 862 per 100,000 persons (95% CI: 655-1,070) by CDC method, and 925 per 100,000 persons (95% CI: 908-943) by HDHHS method. Consistent with the national finding, this study found African Americans, and men who have sex with men (MSM) accounted for most of the new HIV infections among the individuals testing at Houston public health laboratory. Using CDC statistical method, this study also found the highest cumulative HIV incidence (2,176 per 100,000 persons [95%CI: 1,536-2,798]) was among those who tested in the HIV counseling and testing sites, compared to the sexually transmitted disease clinics (1,242 per 100,000 persons [95%CI: 871-1,608]) and city health clinics (215 per 100,000 persons [95%CI: 80-353]. This finding suggested the HIV counseling and testing sites in Houston were successful in reaching high risk populations and testing them early for HIV. In addition, older age groups had higher cumulative HIV incidence, but accounted for smaller proportions of new HIV infections. The incidence in the 30-39 age group (994 per 100,000 persons [95%CI: 625-1,363]) was 1.5 times the incidence in 13-29 age group (645 per 100,000 persons [95%CI: 447-840]); the incidences in 40-49 age group (1,371 per 100,000 persons [95%CI: 765-1,977]) and 50 or above age groups (1,369 per 100,000 persons [95%CI: 318-2,415]) were 2.1 times compared to the youngest 13-29 age group. The increased HIV incidence in older age groups suggested that persons 40 or above were still at risk to contract HIV infections. HIV prevention programs should encourage more people who are age 40 and above to test for HIV. ^ The second study investigated concurrent diagnoses of HIV and AIDS in Houston. Concurrent HIV/AIDS diagnosis is defined as AIDS diagnosis within three months of HIV diagnosis. This study found about one-third of the HIV cases were diagnosed with HIV and AIDS concurrently (within three months) in Houston/Harris County. Using multivariable logistic regression analysis, this study found being male, Hispanic, older, and diagnosed in the private sector of care were positively associated with concurrent HIV and AIDS diagnoses. By contrast, men who had sex with men and also used injection drugs (MSM/IDU) were 0.64 times (95% CI: 0.44-0.93) less likely to have concurrent HIV and AIDS diagnoses. A sensitivity analysis comparing difference durations of elapsed time for concurrent HIV and AIDS diagnosis definitions (1-month, 3-month, and 12-month cut-offs) affected the effect size of the odds ratios, but not the direction. ^ The results of these two studies, one describing characteristics of the individuals who were newly infected with HIV, and the other study describing persons who were diagnosed with HIV and AIDS concurrently, can be used as a reference for HIV prevention program planning in Houston/Harris County. ^
Resumo:
Clostridium difficile is the leading definable cause of nosocomial diarrhea worldwide due to its virulence, multi-drug resistance, spore-forming ability, and environmental persistence. The incidence of C. difficile infection (CDI) has been increasing exponentially in the last decade. Virulent strains of C. difficile produce either toxin A and/or toxin B, which are essential for the pathogenesis of this bacterium. Current methods for diagnosing CDI are mostly qualitative tests that detect the bacterium, the toxins, or the toxin genes. These methods do not differentiate virulent C. difficile strains that produce active toxins from non-virulent strains that do not produce toxins or produce inactive toxins. Based on the knowledge that C. difficile toxins A and B cleave a substrate that is stereochemically similar to the native substrate of the toxins, uridine diphosphoglucose, a quantitative, cost-efficient assay, the Cdifftox activity assay, was developed to measure C. difficile toxin activity. The concept behind the activity assay was modified to develop a novel, rapid, sensitive, and specific assay for C. difficile toxins in the form of a selective and differential agar plate culture medium, the Cdifftox Plate assay (CDPA). This assay combines in a single step the specific identification of C. difficile strains and the detection of active toxin(s). The CDPA was determined to be extremely accurate (99.8% effective) at detecting toxin-producing strains based on the analysis of 528 C. difficile isolates selected from 50 tissue culture cytotoxicity assay-positive clinical stool samples. This new assay advances and improves the culture methodology in that only C. difficile strains will grow on this medium and virulent strains producing active toxins can be differentiated from non-virulent strains. This new method reduces the time and effort required to isolate and confirm toxin-producing C. difficile strains and provides a clinical isolate for antibiotic susceptibility testing and strain typing. The Cdifftox activity assay was used to screen for inhibitors of toxin activity. Physiological levels of the common human conjugated bile salt, taurocholate, was found to inhibit toxin A and B in vitro activities. When co-incubated ex vivo with purified toxin B, taurocholate protected Caco-2 colonic epithelial cells from the damaging effects of the toxin. Furthermore, using a caspase-3 detection assay, taurocholate reduced the extent of toxin B-induced Caco-2 cell apoptosis. These results suggest that bile salts can be effective in protecting the gut epithelium from C. difficile toxin damage, thus, the delivery of physiologic amounts of taurocholate to the colon, where it is normally in low concentration, could be useful in CDI treatment. These findings may help to explain why bile rich small intestine is spared damage in CDI, while the bile salt poor colon is vulnerable in CDI. Toxin synthesis in C. difficile occurs during the stationary phase, but little is known about the regulation of these toxins. It was hypothesized that C. difficile toxin synthesis is regulated by a quorum sensing mechanism. Two lines of evidence supported this hypothesis. First, a small (KDa), diffusible, heat-stable toxin-inducing activity accumulates in the medium of high-density C. difficile cells. This conditioned medium when incubated with low-density log-phase cells causes them to produce toxin early (2-4 hrs instead of 12-16 hrs) and at elevated levels when compared with cells grown in fresh medium. These data suggested that C. difficile cells extracellularly release an inducing molecule during growth that is able to activate toxin synthesis prematurely and demonstrates for the first time that toxin synthesis in C. difficile is regulated by quorum signaling. Second, this toxin-inducing activity was partially purified from high-density stationary-phase culture supernatant fluid by HPLC and confirmed to induce early toxin synthesis, even in C. difficile virulent strains that over-produce the toxins. Mass spectrometry analysis of the purified toxin-inducing fraction from HPLC revealed a cyclic compound with a mass of 655.8 Da. It is anticipated that identification of this toxin-inducing compound will advance our understanding of the mechanism involved in the quorum-dependent regulation of C. difficile toxin synthesis. This finding should lead to the development of even more sensitive tests to diagnose CDI and may lead to the discovery of promising novel therapeutic targets that could be harnessed for the treatment C. difficile infections.