5 resultados para 480 Classical

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Operant and classical conditioning are major processes shaping behavioral responses in all animals. Although the understanding of the mechanisms of classical conditioning has expanded significantly, the understanding of the mechanisms of operant conditioning is more limited. Recent developments in Aplysia are helping to narrow the gap in the level of understanding between operant and classical conditioning, and have raised the possibility of studying the neuronal processes underlying the interaction of operant and classical components in a relatively complex learning task. In the present study, we describe a first step toward realizing this goal, by developing a single in vitro preparation in which both operant and classical conditioning can be studied concurrently. The new paradigm reproduced previously published results, even under more conservative and homogenous selection criteria and tonic stimulation regime. Moreover, the observed learning was resistant to delay, shortening, and signaling of reinforcement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feeding behavior of Aplysia californica can be classically conditioned using tactile stimulation of the lips as a conditioned stimulus (CS) and food as an unconditioned stimulus (US). Moreover, several neural correlates of classical conditioning have been identified. The present study extended previous work by developing an in vitro analog of classical conditioning and by investigating pairing-specific changes in neuronal and synaptic properties. The preparation consisted of the isolated cerebral and buccal ganglia. Electrical stimulation of a lip nerve (AT4) and a branch of the esophageal nerve (En2) served as the CS and US, respectively. Three protocols were used: paired, unpaired, and US alone. Only the paired protocol produced a significant increase in CS-evoked fictive feeding. At the cellular level, classical conditioning enhanced the magnitude of the CS-evoked synaptic input to pattern-initiating neuron B31/32. In addition, paired training enhanced both the magnitude of the CS-evoked synaptic input and the CS-evoked spike activity in command-like neuron CBI-2. The in vitro analog of classical conditioning reproduced all of the cellular changes that previously were identified following behavioral conditioning and has led to the identification of several new learning-related neural changes. In addition, the pairing-specific enhancement of the CS response in CBI-2 indicates that some aspects of associative plasticity may occur at the level of the cerebral sensory neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model for cerebellar involvement in motor learning was tested using classical eyelid conditioning in the rabbit. Briefly, we assume that modifications of the strength of granule cell synapses at Purkinje cells in the cerebellar cortex and mossy fiber (MF) synapses at cerebellar interpositus nuclei are responsible for the acquisition, adaptively-timed expression, and extinction of conditioned eyelid responses (CRs). A corollary of these assumptions is that the cerebellar cortex is necessary for acquisition and extinction. This model also suggests a mechanism whereby the cerebellar cortex can discriminate different times during a conditioned stimulus (CS) and thus mediate the learned timing of CRs. Therefore, experiments were done to determine the role of the cerebellar cortex in the timing, extinction, and acquisition of CRs. Lesions of the cerebellar cortex that included the anterior lobe disrupted the learned timing of CRs such that they occurred at extremely short latencies. Stimulation of MFs in the middle cerebellar peduncle as the CS could support differently timed CRs in the same animal. These data indicate that synaptic plasticity in the cerebellar cortex mediates the learned timing of CRs. These short-latency CRs which resulted from anterior lobe damage did not extinguish, while CRs in animals receiving lesions which did not include the anterior lobe extinguished normally. Preliminary data suggests that lesions of the anterior lobe which produce short-latency responses prevent the acquisition of CRs to a novel CS. These findings indicate that the anterior lobe of cerebellar cortex is necessary for eyelid conditioning. The involvement of the anterior lobe in eyelid conditioning has not been previously reported, however, the anterior lobe has generally been spared in lesion studies examining cerebellar cortex involvement in eyelid conditioning due to its relatively inaccessible location. The observation that the anterior lobe of the cerebellar cortex is not always required for the basic expression of CRs, but is necessary for response timing, extinction, and acquisition, is consistent with the hypothesis that eyelid conditioning can involve plasticity in both the cerebellar cortex and interpositus nucleus and that plasticity in the nucleus is controlled by Purkinje cell activity. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In classical conditioning, an associative form of learning, animals learn to associate two stimuli. Cellular and molecular mechanisms for the induction and consolidation of associative learning and memory at the level of single cells and synaptic connections have been studied in both vertebrate and invertebrate animals. The majority of studies, however, relied on aversive stimuli to induce learning. This bias may limit the extent to which identified mechanisms generalize to other forms of associative learning and memory, such as appetitive forms. The goal of the present study was to develop a classical conditioning procedure for the marine mollusk Aplysia californica using appetitive reinforcement, and to analyze associative learning using behavioral and electrophysiological techniques. ^ Using tactile stimulation of the lips as the conditional stimulus (CS) and food as the unconditional stimulus (US) a training protocol was developed that reliably induced classical conditioning of feeding behavior. Memory persisted for at least 24 hours. The gross organization of reinforcement-mediating pathways was analyzed in additional behavioral experiments. Moreover, neurophysiological correlates of classical conditioning were identified and characterized in an in vitro preparation containing the circuitry for feeding behavior. In vitro stimulation of a nerve (AT4) that may mediate the CS during training, resulted in a greater number of buccal motor patterns (BMPs) in brains from conditioned animals, as compared to control animals. The majority of these BMPs were ingestion-like, consistent with the increased number of bites in response to the CS after classical conditioning. Moreover, classical conditioning correlated with increased excitatory synaptic input to BMP-initiating neuron B31/32, in response to stimulation of AT 4, as compared to controls. The expression of the correlates of classical conditioning identified in this study was specific to stimulation of AT 4, which is consistent the stimulus specificity that is characteristic for classical conditioning. ^ The identification of cellular correlates of classical conditioning documented here provides the basis for future, more detailed analyses of an appetitive form of associative learning and memory, that may extend the working knowledge of the cellular and molecular mechanisms for associative plasticity in general. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to associate a predictive stimulus with a subsequent salient event (i.e., classical conditioning) and the ability to associate an expressed behavior with the consequences (i.e., operant conditioning) allow for a predictive understanding of a changing environment. Although they are operationally distinct, there has been considerable debate whether at some fundamental level classical and operant conditioning are mechanistically distinct or similar. Feeding behavior of Aplysia (i.e., biting) was chosen as the model system and was successfully conditioned with appetitive forms of both operant and classical conditioning. The neuronal circuitry responsible for feeding is well understood and is suitable for cellular analyses, thus providing for a mechanistic comparison between these two forms of associative learning. ^ Neuron B51 is part of the feeding circuitry of Aplysia and is critical for the expression of ingestive behaviors. B51 also is a locus of plasticity following both operant and classical conditioning. Both in vivo and in vitro operant conditioning increased the input resistance and the excitability of B51. No pairing-specific changes in the input resistance were observed following both in vivo and in vitro classical conditioning. However, classical conditioning decreased the excitability of B51. Thus, both operant and classical conditioning modified the threshold level for activation of neuron B51, but in opposite directions, revealing key differences in the cellular mechanisms underlying these two forms of associative learning. ^ Next, the cellular mechanisms underlying operant conditioning were investigated in more detail using a single-cell analogue. The single-cell analogue successfully recapitulated the previous in vivo and in vitro operant conditioning results by increasing the input resistance and the excitability of B51. Both PKA and PKC were necessary for operant conditioning. Dopamine appears to be the transmitter mediating the reinforcement signal in this form of conditioning. A D1 dopamine receptor antibody revealed that the D1receptor localizes to the axon hillock, which is also the region that gives the strongest response when iontophoresing dopamine. ^ The studies presented herein, thus, provide for a greater understanding of the mechanisms underlying both of these forms of associative learning and demonstrate that they likely operate through distinct cellular mechanisms. ^