7 resultados para 4-tetrahydro-beta-carboline-3-car-boxylicb acid

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lysophosphatidic acid (LPA) is a bioactive phospholipid and binds to its receptors, a family of G protein-coupled receptors (GPCR), which initiates multiple signaling cascades and leads to activation of several transcription factors, including NF-κB. NF-κB critically regulates numerous gene expressions, and is persistently active in many diseases. In our previous studies, we have demonstrated that LPA-induced NF-κB activation is dependent on a novel scaffold protein, CARMA3. However, how CARMA3 is recruited to receptor remains unknown. β-Arrestins are a family of proteins involved in desensitization of GPCR signaling. Additionally, β-arrestins function as signaling adaptor proteins, and mediate multiple signaling pathways. Therefore, we have hypothesized that β-arrestins may link CARMA3 to LPA receptors, and facilitate LPA-induced NF-κB activation. ^ Using β-arrestin-deficient MEFs, we found that β-arrestin 2, but not β-arrestin 1, was required for LPA-induced NF-κB activation. Also, we showed that the expression of NF-κB-dependent cytokines, such as interlukin-6, was impaired in β-arrestin 2-deficient MEFs. Mechanistically, we demonstrated the inducible association of endogenous β-arrestin 2 and CARMA3, and we found the CARD domain of CARMA3 interacted with 60-320 residues of β-arrestin 2. To understand why β-arrestin 2, but not β-arrestin 1, mediated NF-κB activation, we generated β-arrestin mutants. However, some mutants degraded quickly, and the rest did not rescue NF-κB activation in β-arrestin-deficient MEFs, though they had similar binding affinities with CARMA3. Therefore, it indicates that slight changes in residues may determine the different functions of β-arrestins. Moreover, we found β-arrestin 2 deficiency impaired LPA-induced IKK kinase activity, while it did not affect LPA-induced IKKα/β phosphorylation. ^ In summary, our results provide the genetic evidence that β-arrestin 2 serves as a positive regulator in NF-κB signaling pathway by connecting CARMA3 to LPA receptors. Additionally, we demonstrate that β-arrestin 2 is required for IKKα/β activation, but not for the inducible phosphorylation of IKKα/β. Because the signaling pathways around the membrane-proximal region of LPA receptors and GPCRs are quite conserved, our results also suggest a possible link between other GPCRs and CARMA3-mediated NF-κB activation. To fully define the role of β-arrestins in LPA-induced NF-κB signaling pathways will help to identify new drug targets for clinical therapeutics.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two genetically variant forms of rat "acid" beta-galactosidase were found to differ in isoelectric point and pH dependence, but not in thermostability or sensitivity to inhibition by p-mercuribenzoate (PMB). The results of two backcrosses and an intercross indicated that the isoelectric focusing phenotypes are controlled by two codominant alleles at a single autosomal locus, for which we propose the name Glb-1. No significant linkage between Glb-1 and albino (LG I), brown (LG II), or hooded (LG VI) was observed. Strain-specific differences in total levels of kidney beta-galactosidase were detected, but it is not yet known whether the variation is controlled by genes linked to Glb-1. Experiments in which organ homogenates were incubated with neuraminidase indicated that the genetically variant forms do not result from differences in sialylation, though sialylation does appear to be largely responsible for the presence of multiple bands within each phenotype and for differences in the banding patterns of beta-galactosidases derived from different organs. The beta-galactosidase present in the bands used for Glb-1 typing resembles human GM1 gangliosidase (GLB1) with respect to pH optimum, substrate specificity, and susceptibility to inhibition by PMB. It also appears that Glb-1 is homologous with the Bgl-e locus of the mouse. In rats as in mice the genetically variant bands of beta-galactosidase are active at acid pH and have relatively high isoelectric points. In both species these bands are readily detectable in kidney homogenates, and can be revealed in homogenates of liver or spleen following treatment with neuraminidase. The presence of the same beta-galactosidase bands in homogenates of rat kidney and small intestine as well as in neuraminidase-treated homogenates of liver and spleen suggests that the Glb-1 variants differ by one or more point mutations in the structural gene for "acid" beta-galactosidase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cmd4 is a colcemid-sensitive CHO cell line that is temperature sensitive for growth and expresses an altered $\beta$-tubulin, $\beta\sb1$. One revertant of this cell line, D2, exhibits a further alteration in $\beta\sb1$ resulting in an acidic shift in its isoelectric point and a decrease in its molecular weight to 40 kD, as measured by two dimensional gel electrophoresis. This $\beta$-tubulin variant has been shown to be assembly-defective and unstable. Characterization of the mutant $\beta\sb1$ in D2 by high pressure liquid chromatography (HPLC) revealed the loss of methionine containing tryptic peptides 7,8,9, and 10. Southern analysis of the genomic DNA digested with several different restriction enzymes resulted in the appearance of new restriction fragments 250 base pairs shorter than the corresponding fragments from the wild-type $\beta\sb1$-tubulin gene. Northern analysis on mRNA from D2 revealed two new message products that also differed by 250 bases from the corresponding wild type $\beta$-tubulin transcripts. To precisely define the region of the alteration, cloning and sequencing of the mutant and wild type genomic $\beta$-tubulin genes were conducted. A size-selected EcoRI genomic library was prepared using the Stratagene lambda Zap II phage cloning system. Using subclones of CHO $\beta$-tubulin cDNA as probes, a 2.5 kb wild type clone and a 2.3 kb mutant clone were identified from this library. Each of these was shown to contain a portion of the gene extending from intron 3 through the end of the coding sequence in exon 4 and into the 3$\sp\prime$ untranslated region on the basis of alignment with the published human $\beta$-tubulin sequence. Sequencing of the mutant 2.3 kb clone revealed that the mutation is due to a 246 base pair internal deletion in exon 4 (base pair 756-1001) that encodes amino acids 253-334. This deletion results in the loss of a putative binding site for GTP which could potentially explain the phenotype of this mutant $\beta$-tubulin. Also sequence comparison of the 3$\sp\prime$ untranslated region between different species revealed the conservation of 200 base pairs with 78% homology. It is proposed that this region could play an important role in the regulation of $\beta$-tubulin gene expression. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The retinal circuitry underlying the release of dopamine was examined in the turtle, Pseudemys scripta elegans, using neurochemical release studies, anatomical techniques, and biochemistry. There was a dose- and calcium-dependent release of dopamine from turtle retinas incubated in $\sp3$H-dopamine after perfusion of the GABA antagonist bicuculline. This indicated that dopamine release was tonically inhibited by GABA. Other putative retinal transmitters were examined. Glutamate antagonists selective for hyperpolarizing bipolar cells, such as 2,3-piperidine dicarboxylic acid (PDA), caused dose- and calcium-dependent release of dopamine from the retina. In contrast, release was not observed after perfusion with 4-aminophosphonobutyric acid, a specific antagonist of depolarizing bipolar cells. This indicated that depolarizing bipolar cells were not involved in retinal circuitry underlying the release of dopamine in the turtle retina. The release produced by PDA was blocked by bicuculline, indicating a polysynaptic mechanism of release. None of the other agents tested, which included carbachol, strychnine, dopamine uptake inhibitors, serotonin, tryptamine, muscimol, melatonin, or dopamine itself produced release.^ The cells capable of the release of dopamine were identified using both uptake autoradiography and immunocytochemical localization with dopamine antisera. The simplest circuitry based on these findings is signal transmission from photoreceptors to hyperpolarizing bipolar cells then to GABAergic cells, and finally to dopaminergic amacrine cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinoic acid has profound effects on the cellular growth and differentiation of a variety of cells. However, the molecular basis of retinoic acid action has, until recently, not been well understood. The identification of retinoic acid receptors which bear a high degree of homology to members of the steroid receptor super-family has dramatically altered our understanding of the biology of retinoids. The focus of this dissertation has been toward identification of retinoic acid binding proteins responsible for the effects of this molecule on gene expression.^ We have characterized in detail the retinoic acid-dependent induction of tissue transglutaminase gene expression in a myeloid cell line, human promyelocytic leukemia cells (HL-60 cells). Using cDNA probes specific for tissue transglutaminase, we have determined that the retinoic acid induced increase in enzyme level is due to an increase in the level of tissue transglutaminase mRNA. We have used this model as a probe to investigate the molecular basis of retinoid regulated gene expression.^ This thesis demonstrates that retinoic acid receptors are expressed in cells which induce tissue transglutaminase expression in response to retinoic acid. In Hl-60 cells retinoic acid-induced transglutaminase expression is associated with saturable nuclear retonic acid binding. Transcripts for both the alpha and beta forms of the retinoic acid receptors can be detected in these cells. Pretreatment of HL-60 cells with agents that potentiate retinoic acid-induced transglutaminase expression also modestly induced the alpha form of the retinoic acid receptor. Studies in macrophages and umbilical vein endothelial cells have also associated expression of the beta form of the retinoic acid with retinoic acid induced tissue transglutaminase expression.^ To investigate directly if retinoic acid receptors regulate retinoic acid-induced tissue transglutaminase expression we developed a series of stably transfected Balb-c 3T3 cells expressing different levels of the beta or gamma form of the retinoic acid receptor. These studies indicated that either the beta or gamma receptor can stimulate endogenous tissue transglutaminase expression in response to retinoic acid. These are among the first studies in the steroid field to describe regulation of an endogenous gene by a transfected receptor. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metabolism of the antitumor agent 6-thioguanine (TG, NSC-752) by rat liver was studied in vitro. Livers from adult male Sprague-Dawley rats were homogenized and the "liver homogenate" was subjected to differential centrifugation to obtain the "10,000 x g pellet", the "post-mitochondrial fraction", the "cytosol fraction", and the "microsomes". The homogenity of each fraction was estimated by appropriate marker enzyme assays. To delineate the in vitro metabolism of TG by rat liver, 0.2 mM of {8-('14)C}TG was incubated with different subcellular fractions in KCl-Tris-MgCl(,2) buffer, pH 7.4 at 37(DEGREES). The metabolites formed were identified by chromatography, UV spectrometry, as well as mass spectrometry. After a 1 hr incubation, TG was metabolized by the liver homogenate, the 10,000 x g pellet and the post-mitochondrial fraction mainly to 6-thioguanosine (TGR), accompanied by varying lesser amounts of 6-thiouric acid (TUA), allantoin, guanine-6-sulfinic acid (G-SO(,2)H) and an unknown product. In comparison, the cytosal fraction converted TG almost entirely to TGR and TUA in equal amounts. The formation of TGR from TG was limited by the endogenous supply of ribose-1-phosphate. With the microsomal fraction, however, TG was metabolized significantly to G-SO(,2)H and the unknown, accompanied with some TGR. After a 5 hr incubation the metabolism of TG was changed to favor the catabolic route, yielding mostly TUA in the post-mitochondrial and cytosol fractions; but mainly allantoin in the liver homogenate fraction. The kinetic studies of TG metabolism by the subcellar fractions indicated that the formation of TGR served as a depot form of TG. The level of TGR decreased when the catabolism of TG became prominent. The oxidation of TG to GSO(,2)H mediated by the hepatic microsomes represented a new catabolic pathway of TG. This GSO(,2)H, under acidic conditions, readily decomposes to guanine and inorganic sulfate. In the presence of reduced glutathione in Tris buffer, pH 7.8 at 25(DEGREES), GSO(,2)H is adducted to glutathione chemically to form S-(2-amino-purin-6-yl) glutathione and conceivably, inorganic sulfate. Therefore, the formation of GSO(,2)H from TG might have implication in the desulfuration mechanism of TG. On the other hand, the unknown formed from TG by the action of the microsomal enzymes appeared to be a TG conjugate. However, it is neither a glutathione, a glucuronide, nor a ribose conjugate. Additionally, the deamination of TG by guanine deaminase (E.C.3.5.4.3) isolated from rat liver was also investigated. TG is a poorer substrate (Km = 4.8 x 10('-3)M) for guanine deaminase than that of guanine (Km = 4.7 x 10('-6)M) at pH 7.25, optimal pH for TG as a substrate. TG is also a competitive inhibitor of guanine for guanine deaminase, with a ki of 2.2 x 10('-4)M. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The equilibrium constant (K(,c)) under physiological conditions (38(DEGREES)C, 0.25 M ionic strength (I), pH 7.0) for the glycine synthase (GS) reaction (E C 2.1.2.1.0) (Equation 1) has been determined. (UNFORMATTED TABLE FOLLOWS)^ 5,10-CH(,2)-H(,4)Folate NADH NH (,4)+ CO(,2) ^ K(,c) = Eq. 1^ H(,4)Folate NAD('+) GLY ^(TABLE ENDS)^ The enzymatic instability of the GS enzyme complex itself has made it necessary to determine the overall K(,c) from the product of constants for the partial reactions of GS determined separately under the same conditions. The partial reactions are the H(,4)Folate-formaldehyde (CH(,2)(OH)(,2)) condensation reaction (Reaction 1) the K(,c) for which has been reported by this laboratory (3.0 x 10('4)), the lipoate (LipS(,2)) dehydrogenase reaction (LipDH) (Reaction 2) and the Gly-Lip^ decarboxylase reaction (Reaction 3) forming reduced lipoate (Lip(SH)(,2)), NH(,4)('+), CO(,2) and CH(,2)(OH)(,2.) (UNFORMATTED TABLE FOLLOWS)(,)^ H(,4)Fote + CH(,2)(OH)(,2) 5,10-CH(,2)-H(,4)Folate (1)^ Lip(SH)(,2) + NAD('+) LipS(,2) + NADH + H('+) (2)^ H('+) + Gly + LipS(,2) Lip(SH)(,2) + NH(,4)('+) CO(,2) + CH(,2)(OH)(,2) (3)^(TABLE ENDS)^ In this work the K(,c) for Reactions 2 and 3 are reported.^ The K(,c)' for the LipDH reaction described by other authors was reported with unexplainable conclusions regarding the pH depend- ence for the reaction. These conclusions would imply otherwise unexpected acid dissociation constants for reduced and oxidized lipoate. The pK(,a)',s for these compounds have been determined to resolve discrepancy. The conclusions are as follows: (1) The K(,c) for the LipDH reaction is 2.08 x 10('-8); (2) The pK(,a)',s for Lip(SH)(,2) are 4.77(-COOH), 9.91(-SH), 11.59(-SH); for LipS(,2) the carboxyl pK(,a)' is 4.77; (3) Contrary to previous literature, the log K(,c)' for the LipDH reaction is a linear function of the pH, a conclusion supported by the values for the dissociation constants.^ The K(,c) for Reaction 3 is the product of constants for Reactions 4-7. (UNFORMATTED TABLE FOLLOWS)^ LipSHSCH(,2)OH + H(,2)O Lip(SH)(,2) + CH(,2)(OH)(,2) (4)^ H(,2)O + LipSHSCH(,2)NH(,3)('+) LipSHSCH(,2)OH + NH(,4)('+) (5)^ LipSHSCH(,2)NH(,2) + H('+) LipSHSCH(,2)NH(,3)('+) (6)^ Gly + LipS(,2) LipSHSCH(,2)NH(,2) + CO(,2) (7)^(TABLE ENDS)^ Reactions 4-6 are non-enzymatic reactions whose constants were determined spectrophotometrically. Reaction 7 was catalyzed by the partially purified P-protein of GS with equilibrium approached from both directions. The value for K(,c) for this reaction is 8.15 x 10('-3). The combined K(,c) for Reactions 4-7 or Reaction 3 is 2.4 M.^ The overall K(,c) for the GS reaction determined by combination of values for Reactions 1-3 is 1.56 x 10('-3). ^