4 resultados para 25-hydroxyvitamin D-3-1-alpha-hydroxylase

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The uptake, metabolism, and metabolic effects of the antitumor tricyclic nucleoside (TCN, NSC-154020) were studied in vitro. Uptake of TCN by human erythrocytes was concentrative, resulting mainly from the rapid intracellular phosphorylation of TCN. At high TCN doses, however, unchanged TCN was also concentrated within the erythrocytes. The initial linear rate of TCN uptake was saturable and obeyed Michaelis-Menten kinetics. TCN was metabolized chiefly to its 5'-monophosphate not only by human erythrocytes but also by wild-type Chinese hamster ovary (CHO) cells. In addition, three other metabolites were detected by means of high-performance liquid chromatography. The structures of these metabolites were elucidated by ultraviolet spectroscopy, infrared spectroscopy, mass spectrometry, and further confirmed by incubations with catabolic enzymes and intact wild-type or variant CHO cells. All were novel types of oxidative degradation products of TCN. Two are proposed to be (alpha) and (beta) anomers of a D-ribofuranosyl nucleoside with a pyrimido{4,5-c}pyridazine-4-one base structure. The third metabolite is most likely the 5'-monophosphate of the (beta) anomer. A CHO cell line deficient in adenosine kinase activity failed to phosphorylate either TCN or the (beta) anomer. No further phosphorylation of the 5'-monophosphates by normal cells occurred. Although the pathways leading to the formation of these TCN metabolites have not been proven, a mechanism is proposed to account for the above observations. The same adenosine kinase-deficient CHO cells were resistant to 500 (mu)M TCN, while wild-type cells could not clone in the presence of 20 (mu)M TCN. Simultaneous addition of purines, pyrimidines, and purine precursors failed to reverse this toxicity. TCN-treatment strongly inhibited formate or glycine incorporation into ATP and GTP of wild-type CHO cells. Hypoxanthine incorporation inhibited to a lesser degree, with the inhibition of incorporation into GTP being more pronounced. Although precursor incorporation into GTP was inhibited, GTP concentrations were elevated rather than reduced after 4-hr incubations with 20 (mu)M or 50 (mu)M TCN. These results suggested an impairment of GTP utilization. TCN (50 (mu)M) inhibited leucine and thymidine incorporation into HClO(,4)-insoluble material to 30-35% of control throughout 5-hr incubations. Incorporation of five other amino acids was inhibited to the same extent as leucine. Pulse-labeling assays (45 min) with uridine, leucine, and thymidine failed to reveal selective inhibition of DNA or protein synthesis by 0.05-50 (mu)M TCN; however, the patterns of inhibition were similar to those of known protein synthesis inhibitors. TCN 5'-monophosphate inhibited leucine incorporation by rabbit reticulocyte lysates; the inhibition was 2000 times less potent than that of cycloheximide. The 5'-monophosphate failed to inhibit a crude nuclear DNA-synthesizing system. Although TCN 5'-monophosphate apparently inhibits purine synthesis de novo, its cytotoxicity is not reversed by exogenous purines. Consequently, another mechanism such as direct inhibition of protein synthesis is probably a primary mechanism of toxicity. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among Mexican Americans, the second largest minority group in the United States, the prevalence of gallbladder disease is markedly elevated. Previous data from both genetic admixture and family studies indicate that there is a genetic component to the occurrence of gallbladder disease in Mexican Americans. However, prior to this thesis no formal genetic analysis of gallbladder disease had been carried out nor had any contributing genes been identified.^ The results of complex segregation analysis in a sample of 232 Mexican American pedigrees documented the existence of a major gene having two alleles with age- and gender-specific effects influencing the occurrence of gallbladder disease. The estimated frequency of the allele increasing susceptibility was 0.39. The lifetime probabilities that an individual will be affected by gallbladder disease were 1.0, 0.54, and 0.00 for females of genotypes "AA", "Aa", and "aa", respectively, and 0.68, 0.30, and 0.00 for males, respectively. This analysis provided the first conclusive evidence for the existence of a common single gene having a large effect on the occurrence of gallbladder disease.^ Human cholesterol 7$\alpha$-hydroxylase is the rate-limiting enzyme in bile acid synthesis. The results of an association study in both a random sample and a matched case/control sample showed that there is a significant association between cholesterol 7$\alpha$-hydroxylase gene variation and the occurrence of gallbladder disease in Mexican Americans males but not in females. These data have implicated a specific gene, 7$\alpha$-hydroxylase, in the etiology of gallbladder disease in this population.^ Finally, I asked whether the inferred major gene from complex segregation analysis is genetically linked to the cholesterol 7$\alpha$-hydroxylase gene. Three pedigrees predicted to be informative for linkage analysis by virtue of supporting the major gene hypothesis and having parents with informative genotypes and multiple offspring were selected for this linkage analysis. In each of these pedigrees, the recombination fractions maximized at 0 with a positive, albeit low, LOD score. The results of this linkage analysis provide preliminary and suggestive evidence that the cholesterol 7$\alpha$-hydroxylase gene and the inferred gallbladder disease susceptibility gene are genetically linked. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our laboratory has developed and partially characterized a strain of New Zealand white rabbits that are resistant to the hypercholesterolemia which typically occurs in normal rabbits when fed a cholesterol-enriched diet. This phenotype is most likely attributed to an increase in bile acid excretion by hypercholesterolemia-resistant (CRT) rabbits as a result of elevated enzyme activity of cholesterol 7$\alpha$-hydroxylase (C7$\alpha$H), the rate-limiting enzyme in bile acid synthesis. Northern analysis revealed that CRT rabbits, in comparison to normal rabbits, have a 7-fold greater steady-state C7$\alpha$H mRNA levels irrespective of dietary regimen. The C7$\alpha$H gene in both phenotypes was determined to be a single copy gene. The hypothesis was that the elevated C7$\alpha$H mRNA levels in CRT rabbits, in comparison to normal animals, was due to an increase in the transcription rate of the C7$\alpha$H gene as a result of a mutation in a cis-acting element and/or a trans-acting factor within the hepatocyte. To isolate the C7$\alpha$H gene from both normal and CRT rabbits, genomic libraries were prepared from both phenotypes into $\lambda$GEM12 vectors using conventional techniques. Three CRT and one normal phage clones that contained the C7$\alpha$H gene were identified by screening the library with a series of probes located within different exons of the C7$\alpha$H cDNA. Sequencing analysis confirmed that approximately 1100 bp of the C7$\alpha$H 5'-flanking region from both normal and CRT phenotypes was identical. The increase in C7$\alpha$H mRNA levels was not attributed to a cis-acting mutation within this region. Liver nuclear extracts were prepared from normal and CRT rabbits maintained either on a basal or 0.25% cholesterol-enriched diet and incubated with several radiolabeled DNA fragments from the C7$\alpha$H gene. A 37 basepair region, located between nucleotides $-$452 to $-$416 was identified that had altered binding patterns between normal and CRT rabbits as a function of diet. Two additional regions, $-$747 to $-$575 and $-$580 to $-$442, produced banding patterns which were identical, irrespective of phenotype or diet. In conclusion, these studies suggested that the increase in C7$\alpha$H mRNA in CRT rabbits was due to differences in binding of a cholesterol-responsive transcription factor to the C7$\alpha$H promoter. ^