3 resultados para 2 `-deoxyadenosine-5 `-monophosphate

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The uptake, metabolism, and metabolic effects of the antitumor tricyclic nucleoside (TCN, NSC-154020) were studied in vitro. Uptake of TCN by human erythrocytes was concentrative, resulting mainly from the rapid intracellular phosphorylation of TCN. At high TCN doses, however, unchanged TCN was also concentrated within the erythrocytes. The initial linear rate of TCN uptake was saturable and obeyed Michaelis-Menten kinetics. TCN was metabolized chiefly to its 5'-monophosphate not only by human erythrocytes but also by wild-type Chinese hamster ovary (CHO) cells. In addition, three other metabolites were detected by means of high-performance liquid chromatography. The structures of these metabolites were elucidated by ultraviolet spectroscopy, infrared spectroscopy, mass spectrometry, and further confirmed by incubations with catabolic enzymes and intact wild-type or variant CHO cells. All were novel types of oxidative degradation products of TCN. Two are proposed to be (alpha) and (beta) anomers of a D-ribofuranosyl nucleoside with a pyrimido{4,5-c}pyridazine-4-one base structure. The third metabolite is most likely the 5'-monophosphate of the (beta) anomer. A CHO cell line deficient in adenosine kinase activity failed to phosphorylate either TCN or the (beta) anomer. No further phosphorylation of the 5'-monophosphates by normal cells occurred. Although the pathways leading to the formation of these TCN metabolites have not been proven, a mechanism is proposed to account for the above observations. The same adenosine kinase-deficient CHO cells were resistant to 500 (mu)M TCN, while wild-type cells could not clone in the presence of 20 (mu)M TCN. Simultaneous addition of purines, pyrimidines, and purine precursors failed to reverse this toxicity. TCN-treatment strongly inhibited formate or glycine incorporation into ATP and GTP of wild-type CHO cells. Hypoxanthine incorporation inhibited to a lesser degree, with the inhibition of incorporation into GTP being more pronounced. Although precursor incorporation into GTP was inhibited, GTP concentrations were elevated rather than reduced after 4-hr incubations with 20 (mu)M or 50 (mu)M TCN. These results suggested an impairment of GTP utilization. TCN (50 (mu)M) inhibited leucine and thymidine incorporation into HClO(,4)-insoluble material to 30-35% of control throughout 5-hr incubations. Incorporation of five other amino acids was inhibited to the same extent as leucine. Pulse-labeling assays (45 min) with uridine, leucine, and thymidine failed to reveal selective inhibition of DNA or protein synthesis by 0.05-50 (mu)M TCN; however, the patterns of inhibition were similar to those of known protein synthesis inhibitors. TCN 5'-monophosphate inhibited leucine incorporation by rabbit reticulocyte lysates; the inhibition was 2000 times less potent than that of cycloheximide. The 5'-monophosphate failed to inhibit a crude nuclear DNA-synthesizing system. Although TCN 5'-monophosphate apparently inhibits purine synthesis de novo, its cytotoxicity is not reversed by exogenous purines. Consequently, another mechanism such as direct inhibition of protein synthesis is probably a primary mechanism of toxicity. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose of the study. This study had two components. The first component of the study was the development and implementation of an infrastructure that integrated Promotores who teach diabetes self-management into a community clinic. The second component was a six-month randomized clinical trial (RCT) designed to test the effectiveness of the Promotores in changing knowledge, beliefs, and HbA1c levels among Mexican American patients with type 2 diabetes. ^ Methods. Starfield's adaptation of the Donbedian structure, process, and outcome methodology was used to develop a clinic infrastructure that allowed the integration of Promotores as diabetes educators. The RCT of the culturally sensitive Promotores-led 10-week diabetes self-management program compared the outcomes of 63 patients in the intervention group with 68 patients in a wait-list, usual care control group. Participants were Mexican Americans, at least 18 years of age, with type 2 diabetes, who were patients at a Federally Qualified Health Center on the Texas-Mexico border. At baseline, three months, and six months, data were collected using the Diabetes Knowledge Questionnaire (DKQ, the Health Beliefs Questionnaire (HBQ, and HbA1c levels were drawn by the clinic laboratory. A mixed model methodology was used to analyze the data. ^ Results. The infrastructure to support a Promotores-led diabetes self-management course designed in concert with administration, the physicians, and the CDE, resulted in (1) employment of Promotores to teach diabetes self-management courses; (2) integration of provider and nurse oversight of course design and implementation; (3) management of Promotora training, and the development of teaching competencies and skills; (4) coordination of care through communication and documentation policies and procedures; (5) utilization of quality control mechanisms to maintain patient safety; and (6) promotion of a culturally competent approach to the educational process. The RCT resulted in a significant improvement in the intervention group's DKQ scores over time (F [1, 129] = 4.77, p = 0.0308), and in treatment by time (F [2, 168] = 5.85, p = 0.0035). Neither the HBQ scores nor the HbA1c changed over time. However, the baseline HbA1c was 7.49, almost at the therapeutic level. The DKQ, HBQ, and HbA1c results were significantly affected by age; the DKQ and HbA1c by years with diabetes. ^ Conclusions. The clinic model provides a systematic approach to safely address the educational needs of large numbers of patients with type 2 diabetes who live in communities that suffer from a lack of health care professionals. The Promotores-led diabetes self-management course improved the knowledge of patients with diabetes and may be a culturally sensitive strategy for meeting patient educational needs. The low baseline HbA1c levels in this border community suggested that patients in this Federally Qualified Health Center on the Texas-Mexico border were experiencing good medical management of their diabetes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We designed and synthesized a novel daunorubicin (DNR) analogue that effectively circumvents P-glycoprotein (P-gp)-mediated drug resistance. The fully protected carbohydrate intermediate 1,2-dibromoacosamine was prepared from acosamine and effectively coupled to daunomycinone in high yield. Deprotection under alkaline conditions yielded 2$\sp\prime$-bromo-4$\sp\prime$-epidaunorubicin (WP401). The in vitro cytotoxicity and cellular and molecular pharmacology of WP401 were compared with those of DNR in a panel of wild-type cell lines (KB-3-1, P388S, and HL60S) and their multidrug-resistant (MDR) counterparts (KB-V1, P388/DOX, and HL60/DOX). Fluorescent spectrophotometry, flow cytometry, and confocal laser scanning microscopy were used to measure intracellular accumulation, retention, and subcellular distribution of these agents. All MDR cell lines exhibited reduced DNR uptake that was restored, upon incubation with either verapamil (VER) or cyclosporin A (CSA), to the level found in sensitive cell lines. In contrast, the uptake of WP401 was essentially the same in the absence or presence of VER or CSA in all tested cell lines. The in vitro cytotoxicity of WP401 was similar to that of DNR in the sensitive cell lines but significantly higher in resistant cell lines (resistance index (RI) of 2-6 for WP401 vs 75-85 for DNR). To ascertain whether drug-mediated cytotoxicity and retention were accompanied by DNA strand breaks, DNA single- and double-strand breaks were assessed by alkaline elution. High levels of such breaks were obtained using 0.1-2 $\mu$g/mL of WP401 in both sensitive and resistant cells. In contrast, DNR caused strand breaks only in sensitive cells and not much in resistant cells. We also compared drug-induced DNA fragmentation similar to that induced by DNR. However, in P-gp-positive cells, WP401 induced 2- to 5-fold more DNA fragmentation than DNR. This increased DNA strand breakage by WP401 was correlated with its increased uptake and cytotoxicity in these cell lines. Overall these results indicate that WP401 is more cytotoxic than DNR in MDR cells and that this phenomenon might be related to the reduced basicity of the amino group and increased lipophilicity of WP401. ^