2 resultados para 2,4,6,8-tetraoxaadamantanes

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The uptake, metabolism, and metabolic effects of the antitumor tricyclic nucleoside (TCN, NSC-154020) were studied in vitro. Uptake of TCN by human erythrocytes was concentrative, resulting mainly from the rapid intracellular phosphorylation of TCN. At high TCN doses, however, unchanged TCN was also concentrated within the erythrocytes. The initial linear rate of TCN uptake was saturable and obeyed Michaelis-Menten kinetics. TCN was metabolized chiefly to its 5'-monophosphate not only by human erythrocytes but also by wild-type Chinese hamster ovary (CHO) cells. In addition, three other metabolites were detected by means of high-performance liquid chromatography. The structures of these metabolites were elucidated by ultraviolet spectroscopy, infrared spectroscopy, mass spectrometry, and further confirmed by incubations with catabolic enzymes and intact wild-type or variant CHO cells. All were novel types of oxidative degradation products of TCN. Two are proposed to be (alpha) and (beta) anomers of a D-ribofuranosyl nucleoside with a pyrimido{4,5-c}pyridazine-4-one base structure. The third metabolite is most likely the 5'-monophosphate of the (beta) anomer. A CHO cell line deficient in adenosine kinase activity failed to phosphorylate either TCN or the (beta) anomer. No further phosphorylation of the 5'-monophosphates by normal cells occurred. Although the pathways leading to the formation of these TCN metabolites have not been proven, a mechanism is proposed to account for the above observations. The same adenosine kinase-deficient CHO cells were resistant to 500 (mu)M TCN, while wild-type cells could not clone in the presence of 20 (mu)M TCN. Simultaneous addition of purines, pyrimidines, and purine precursors failed to reverse this toxicity. TCN-treatment strongly inhibited formate or glycine incorporation into ATP and GTP of wild-type CHO cells. Hypoxanthine incorporation inhibited to a lesser degree, with the inhibition of incorporation into GTP being more pronounced. Although precursor incorporation into GTP was inhibited, GTP concentrations were elevated rather than reduced after 4-hr incubations with 20 (mu)M or 50 (mu)M TCN. These results suggested an impairment of GTP utilization. TCN (50 (mu)M) inhibited leucine and thymidine incorporation into HClO(,4)-insoluble material to 30-35% of control throughout 5-hr incubations. Incorporation of five other amino acids was inhibited to the same extent as leucine. Pulse-labeling assays (45 min) with uridine, leucine, and thymidine failed to reveal selective inhibition of DNA or protein synthesis by 0.05-50 (mu)M TCN; however, the patterns of inhibition were similar to those of known protein synthesis inhibitors. TCN 5'-monophosphate inhibited leucine incorporation by rabbit reticulocyte lysates; the inhibition was 2000 times less potent than that of cycloheximide. The 5'-monophosphate failed to inhibit a crude nuclear DNA-synthesizing system. Although TCN 5'-monophosphate apparently inhibits purine synthesis de novo, its cytotoxicity is not reversed by exogenous purines. Consequently, another mechanism such as direct inhibition of protein synthesis is probably a primary mechanism of toxicity. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhodobacter sphaeroides 2.4.1 is a Gram negative facultative photoheterotrophic bacterium that has been shown to have an N-acyl homoserine lactone-based quorum sensing system called cer for c&barbelow;ommunity e&barbelow;scape r&barbelow;esponse. The cer ORFs are cerR, the transcriptional regulator, cerI, the autoinducer synthase and cerA , whose function is unknown. The autoinducer molecule, 7,8- cis-N-(tetradecenoyl) homoserine lactone, has been characterized. The objective of this study was to identify an environmental stimulus that influences the regulation of cerRAI and, to characterize transcription of the cer operon. ^ A cerR::lacZ transcriptional fusion was made and β-Galactosidase assays were performed in R. sphaeroides 2.4.1 strains, wild type, AP3 (CerI−) and AP4 (CerR−). The cerR::lacZ β-Galactosidase assays were used as an initial survey of the mode of regulation of the Cer system. A cerA::lacZ translational fusion was created and was used to show that cerA can be translated. The presence of 7,8-cis-N-(tetradecenoyl) homoserine lactone was detected from R. sphaeroides strains wild type and AP4 (CerR−) using a lasR::lacZ translational fusion autoinducer bioassay. The cerR::lacZ transcriptional fusion in R. sphaeroides 2.4.1 wild type was tested under different environmental stimuli, such as various carbon sources, oxygen tensions, light intensities and culture media to determine if they influence transcription of the cer ORFs. Although lacZ assay data implicated high light intensity at 100 W/m2 to stimulate cer transcription, quantitative Northern RNA data of the cerR transcript showed that low light intensity at 3 W/m2 is at least one environmental stimulus that induces cer transcription. This finding was supported by DNA microarray analysis. Northern analysis of the cerRAI transcript provided evidence that the cer ORFs are co-transcribed, and that the cer operon contains two additional genes. Bioinformatics was used to identify genes that may be regulated by the Cer system by identifying putative lux box homologue sequences in the presumed promoter region of these genes. Genes that were identified were fliQ, celB and calsymin, all implicated in interacting with plants. Primer extension was used to help localize cis-elements in the promoter region. The cerR::lacZ transcriptional fusion was monitored in a subset of different global DNA binding transcriptional regulator mutant strains of R. sphaeroides 2.4.1. Those regulators involved in maintaining an anaerobic photosynthetic lifestyle appeared to have an effect. Collectively, the data imply that R. sphaeroides 2.4.1 activates the Cer system when grown anaerobic photosynthetically at low light intensity, 3 W/m2, and it may be involved in an interaction with plants. ^