2 resultados para 150507 Pricing (incl. Consumer Value Estimation)

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Haldane (1935) developed a method for estimating the male-to-female ratio of mutation rate ($\alpha$) by using sex-linked recessive genetic disease, but in six different studies using hemophilia A data the estimates of $\alpha$ varied from 1.2 to 29.3. Direct genomic sequencing is a better approach, but it is laborious and not readily applicable to non-human organisms. To study the sex ratios of mutation rate in various mammals, I used an indirect method proposed by Miyata et al. (1987). This method takes advantage of the fact that different chromosomes segregate differently between males and females, and uses the ratios of mutation rate in sequences on different chromosomes to estimate the male-to-female ratio of mutation rate. I sequenced the last intron of ZFX and ZFY genes in 6 species of primates and 2 species of rodents; I also sequenced the partial genomic sequence of the Ube1x and Ube1y genes of mice and rats. The purposes of my study in addition to estimation of $\alpha$'s in different mammalian species, are to test the hypothesis that most mutations are replication dependent and to examine the generation-time effect on $\alpha$. The $\alpha$ value estimated from the ZFX and ZFY introns of the six primate specise is ${\sim}$6. This estimate is the same as an earlier estimate using only 4 species of primates, but the 95% confidence interval has been reduced from (2, 84) to (2, 33). The estimate of $\alpha$ in the rodents obtained from Zfx and Zfy introns is ${\sim}$1.9, and that deriving from Ube1x and Ube1y introns is ${\sim}$2. Both estimates have a 95% confidence interval from 1 to 3. These two estimates are very close to each other, but are only one-third of that of the primates, suggesting a generation-time effect on $\alpha$. An $\alpha$ of 6 in primates and 2 in rodents are close to the estimates of the male-to-female ratio of the number of germ-cell divisions per generation in humans and mice, which are 6 and 2, respectively, assuming the generation time in humans is 20 years and that in mice is 5 months. These findings suggest that errors during germ-cell DNA replication are the primary source of mutation and that $\alpha$ decreases with decreasing length of generation time. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate quantitative estimation of exposure using retrospective data has been one of the most challenging tasks in the exposure assessment field. To improve these estimates, some models have been developed using published exposure databases with their corresponding exposure determinants. These models are designed to be applied to reported exposure determinants obtained from study subjects or exposure levels assigned by an industrial hygienist, so quantitative exposure estimates can be obtained. ^ In an effort to improve the prediction accuracy and generalizability of these models, and taking into account that the limitations encountered in previous studies might be due to limitations in the applicability of traditional statistical methods and concepts, the use of computer science- derived data analysis methods, predominantly machine learning approaches, were proposed and explored in this study. ^ The goal of this study was to develop a set of models using decision trees/ensemble and neural networks methods to predict occupational outcomes based on literature-derived databases, and compare, using cross-validation and data splitting techniques, the resulting prediction capacity to that of traditional regression models. Two cases were addressed: the categorical case, where the exposure level was measured as an exposure rating following the American Industrial Hygiene Association guidelines and the continuous case, where the result of the exposure is expressed as a concentration value. Previously developed literature-based exposure databases for 1,1,1 trichloroethane, methylene dichloride and, trichloroethylene were used. ^ When compared to regression estimations, results showed better accuracy of decision trees/ensemble techniques for the categorical case while neural networks were better for estimation of continuous exposure values. Overrepresentation of classes and overfitting were the main causes for poor neural network performance and accuracy. Estimations based on literature-based databases using machine learning techniques might provide an advantage when they are applied to other methodologies that combine `expert inputs' with current exposure measurements, like the Bayesian Decision Analysis tool. The use of machine learning techniques to more accurately estimate exposures from literature-based exposure databases might represent the starting point for the independence from the expert judgment.^