2 resultados para 14Carbon uptake rate, attributed to calcification, fractionated

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the study was to evaluate in vitro calcification potential among liposomes composed of phospholipids with variations in fatty acid chains and polar head groups. The liposome was also modified by utilizing mixed phospholipids, incorporation of different types of protein to the liposome, or complexing with various collagen preparations. The samples were then incubated in a metastable calcium phosphate solution for the proposed time period. Calcium and phosphate uptake were measured. Resulting precipitates were processed for x-ray diffraction and electron microscopy. Acidic phospholipid, Dioleoylphosphatidic acid and mixed phospholipids, Dioleoylphosphatidic acid/Dipalmitoylphosphatidylethanolamine liposomes calcified at a faster rate and to a greater degree than other phospholipids tested. The incorporation of polylysine, fibronectin, bone protein, or the complexing with collagen decreased the rate and amount of calcification. Electron microscopy demonstrated the similarity of the calcified collagen-liposome complex to the natural calcification matrix. These preparations may be used as a model to study the role of membrane lipids and collagen-phospholipid during the process of calcification.^ The in vivo study was designed to determine whether the potential existed for the promotion of bone healing by the synthetic liposome-collagen complex. The implant materials were modified to provide decreased antigenicity, biocompatability while maintaining their bone conduction properties. The samples were placed subcutaneously and/or subperiosteally and/or in 8 mm calvarium defects of adult rats. Histological and immunological studies demonstrated that the implant itself retained minimal antigenicity and did not inhibit bone formation. However, modification of the implant may contain the bone induction property and be utilized to stimulate bony healing. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of its antiproliferative and differentiation-inducing properties, all-trans-retinoic acid (ATRA) has been used as a chemopreventive and therapeutic agent, for treatment various cancers including squamous cell carcinomas (SCCs). Long-term treatment with ATRA is associated with toxic effects in patients leading to acute or chronic hypervitaminosis syndrome. Moreover, prolonged treatment with oral ATRA leads to acquired resistance to the differentiation-inducing effects of the drug. This resistance is attributed to the induction of cytochrome P-450-dependent catabolic enzymes that lead to accelerated ATRA metabolism and decline in circulating levels. Most of these problems could be circumvented by incorporating ATRA in liposomes (L-ATRA) which results in sustained drug release, decrease in drug-associated toxicity, and protection of the drug from metabolism in the host. Liposomes also function as a solubilization matrix enabling lipophilic drugs like ATRA to be aerosolized and delivered directly to target areas in the aerodigestive tract and lungs. Of the 14 formulations tested, the positively-charged liposome, DPPC:SA (9:1, w/w) was found to be most effective in interacting with SCC cell lines. This, L-ATRA formulation was stable in the presence of serum proteins and buffered the toxic effects of the drug against several normal and malignant cell lines. The positive charge attributed by the presence of SA was critical for increased uptake and retention of L-ATRA by SCC cell lines and tumor spheroids. L-ATRA was highly effective in mediating differentiation in normal and transformed epithelial cells. Moreover, liposomal incorporation significantly reduced the rate of ATRA metabolism by cells and isolated liver microsomes. In vivo studies revealed that aerosol delivery is an effective way of administering L-ATRA, in terms of its safety and retention by lung tissue. The drug so delivered, is biologically active and had no toxic effects in mice. From these results, we conclude that liposome-incorporation is an excellent way of delivering ATRA to target tissues. The results obtained may have important clinical implications in treating patients with SCCs of the aerodigestive tract. ^