1 resultado para 1267

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanomedicine is an innovative field of science which has recently generated many drug delivery platforms with exciting results. The great potential of these strategies rely on the unique characteristics of the devices at the nano-scale in terms of long time circulation in the blood stream, selective accumulation at the lesions sites, increased solubility in aqueous solutions, etc. Herein we report on a new drug delivery system known as a multistage system which is comprised of non-spherical, mesoporous silicon particles loaded with second stage nanoparticles. The rationally designed particle shape, the possibility to modulate the surface properties and the degree of porosity allow these carriers to be optimized for vascular targeting and to overcome the numerous biological barriers found in drug delivery. In this study we investigated the intra and inter cellular trafficking of the multistage system in endothelial cells bringing evidence of its bio-compatibility as well as its ability to perform multiple intra and inter cellular tasks. Once internalized in cells, the multi-particle construct is able to dissociate, localizing in different subcellular compartments which can be targeted for exocytosis. In particular the second stage nanoparticles were found to be secreted in microvesicles which can act as mediators of transfer of particles across the endothelium and between different endothelial and cancer cells.