3 resultados para 1-D stacks

em DigitalCommons@The Texas Medical Center


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mechanisms underlying chronic pain that develops after spinal cord injury (SCI) are incompletely understood. Most research on SCI pain mechanisms has focused on neuronal alterations within pain pathways at spinal and supraspinal levels associated with inflammation and glial activation. These events might also impact central processes of primary sensory neurons, triggering in nociceptors a hyperexcitable state and spontaneous activity (SA) that drive behavioral hypersensitivity and pain. SCI can sensitize peripheral fibers of nociceptors and promote peripheral SA, but whether these effects are driven by extrinsic alterations in surrounding tissue or are intrinsic to the nociceptor, and whether similar SA occurs in nociceptors in vivo are unknown. We show that small DRG neurons from rats (Rattus norvegicus) receiving thoracic spinal injury 3 d to 8 months earlier and recorded 1 d after dissociation exhibit an elevated incidence of SA coupled with soma hyperexcitability compared with untreated and sham-treated groups. SA incidence was greatest in lumbar DRG neurons (57%) and least in cervical neurons (28%), and failed to decline over 8 months. Many sampled SA neurons were capsaicin sensitive and/or bound the nociceptive marker, isolectin B4. This intrinsic SA state was correlated with increased behavioral responsiveness to mechanical and thermal stimulation of sites below and above the injury level. Recordings from C- and Aδ-fibers revealed SCI-induced SA generated in or near the somata of the neurons in vivo. SCI promotes the entry of primary nociceptors into a chronic hyperexcitable-SA state that may provide a useful therapeutic target in some forms of persistent pain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of studies were undertaken to analyze and compare various aspects of murine class I glycoproteins. An initial area of investigation characterized the Qa-1 alloantigens using two-dimensional gel electrophoresis. Analysis of the products of the Qa-1('b), Qa-1('c) and Qa-1('d) alleles indicated that these were distinct molecules as determined by their lack of comigration upon comparative two-dimensional gel analysis. The importance of asparagine-linked glycosylation in the cell surface expression of class I molecules was also examined. These studies employed tunicamycin, an inhibitor of N-linked glycosylation. Tunicamycin treatment of activated T lymphocytes diminished the surface expression of Qa-1 to undetectable levels; the levels of other class I molecules exhibited little or no decrease. These results indicated that N-linked glycosylation has a differential importance in the cell surface expression of various class I molecules. The molecular weight diversity of class I molecules was also investigated. Molecular weight determination of both the fully glycosylated and unglycosylated forms of H-2 and Qa/Tla region encoded molecules established that there is a significant variation in the sizes of these forms of various class I molecules. The most significant difference ((TURN)9,000 daltons) exists between the unglycosylated forms of H-2K('b) and Qa-2, suggesting that the structural organization of these two molecules may be very different. A comparative two-dimensional gel analysis of various class I glycoproteins isolated from resting and activated T and B lymphocytes indicated that class I molecules expressed on activated T cells exhibited an isoelectrophoretic pattern that was distinct from the isoelectrophoretic pattern of class I molecules expessed on the other cell populations. This difference was attributed to a lower sialic acid content of the molecules expressed on activated T cells. Analysis of cell homogenates determined that activated T cells contained a higher level of endogenous neuraminidase activity than was detected in the other populations, suggesting that this may be the basis of the lower sialic acid content. The relationship of the Qa-4 and Qa-2 alloantigens was also examined. It was established that upon mitogen activation, the expression of Qa-4 was greatly decreased, whereas Qa-2 expression was not decreased. However, an anti-Qa-2 monoclonal antibody blocked the binding of an anti-Qa-4 monoclonal antibody to resting cells. These studies established that Qa-4 is a determinant restricted to resting cells, which is closely associated on the surface with the Qa-2 molecule. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

5-aza-2'-deoxycytidine (DAC) is a cytidine analogue that strongly inhibits DNA methylation, and was recently approved for the treatment of myelodysplastic syndromes (MDS). To maximize clinical results with DAC, we investigated its use as an anti-cancer drug. We also investigated mechanisms of resistance to DAC in vitro in cancer cell lines and in vivo in MDS patients after relapse. We found DAC sensitized cells to the effect of 1-β-D-Arabinofuranosylcytosine (Ara-C). The combination of DAC and Ara-C or Ara-C following DAC showed additive or synergistic effects on cell death in four human leukemia cell lines in vitro, but antagonism in terms of global methylation. RIL gene activation and H3 lys-9 acetylation of short interspersed elements (Alu). One possible explanation is that hypomethylated cells are sensitized to cell killing by Ara-C. Turning to resistance, we found that the IC50 of DAC differed 1000 fold among and was correlated with the dose of DAC that induced peak hypomethylation of long interspersed nuclear elements (LINE) (r=0.94, P<0.001), but not with LINE methylation at baseline (r=0.05, P=0.97). Sensitivity to DAC did not significantly correlate with sensitivity to another hypomethylating agent 5-azacytidine (AZA) (r=0.44, P=0.11). The cell lines most resistant to DAC had low dCK, hENT1, and hENT2 transporters and high cytosine deaminase (CDA). In an HL60 leukemia cell line, resistance to DAC could be rapidly induced by drug exposure, and was related to a switch from monoallelic to biallelic mutation of dCK or a loss of wild type DCK allele. Furthermore, we showed that DAC induced DNA breaks evidenced by histone H2AX phosphorylation and increased homologous recombination rates 7-10 folds. Finally, we found there were no dCK mutations in MDS patients after relapse. Cytogenetics showed that three of the patients acquired new abnormalities at relapse. These data suggest that in vitro spontaneous and acquired resistance to DAC can be explained by insufficient incorporation of drug into DNA. In vivo resistance to DAC is likely due to methylation-independent pathways such as chromosome changes. The lack of cross resistance between DAC and AZA is of potential clinical relevance, as is the combination of DAC and Ara-C. ^