2 resultados para [NO2]-
em DigitalCommons@The Texas Medical Center
Resumo:
Many studies have shown relationships between air pollution and the rate of hospital admissions for asthma. A few studies have controlled for age-specific effects by adding separate smoothing functions for each age group. However, it has not yet been reported whether air pollution effects are significantly different for different age groups. This lack of information is the motivation for this study, which tests the hypothesis that air pollution effects on asthmatic hospital admissions are significantly different by age groups. Each air pollutant's effect on asthmatic hospital admissions by age groups was estimated separately. In this study, daily time-series data for hospital admission rates from seven cities in Korea from June 1999 through 2003 were analyzed. The outcome variable, daily hospital admission rates for asthma, was related to five air pollutants which were used as the independent variables, namely particulate matter <10 micrometers (μm) in aerodynamic diameter (PM10), carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2). Meteorological variables were considered as confounders. Admission data were divided into three age groups: children (<15 years of age), adults (ages 15-64), and elderly (≥ 65 years of age). The adult age group was considered to be the reference group for each city. In order to estimate age-specific air pollution effects, the analysis was separated into two stages. In the first stage, Generalized Additive Models (GAMs) with cubic spline for smoothing were applied to estimate the age-city-specific air pollution effects on asthmatic hospital admission rates by city and age group. In the second stage, the Bayesian Hierarchical Model with non-informative prior which has large variance was used to combine city-specific effects by age groups. The hypothesis test showed that the effects of PM10, CO and NO2 were significantly different by age groups. Assuming that the air pollution effect for adults is zero as a reference, age-specific air pollution effects were: -0.00154 (95% confidence interval(CI)= (-0.0030,-0.0001)) for children and 0.00126 (95% CI = (0.0006, 0.0019)) for the elderly for PM 10; -0.0195 (95% CI = (-0.0386,-0.0004)) for children for CO; and 0.00494 (95% CI = (0.0028, 0.0071)) for the elderly for NO2. Relative rates (RRs) were 1.008 (95% CI = (1.000-1.017)) in adults and 1.021 (95% CI = (1.012-1.030)) in the elderly for every 10 μg/m3 increase of PM10 , 1.019 (95% CI = (1.005-1.033)) in adults and 1.022 (95% CI = (1.012-1.033)) in the elderly for every 0.1 part per million (ppm) increase of CO; 1.006 (95%CI = (1.002-1.009)) and 1.019 (95%CI = (1.007-1.032)) in the elderly for every 1 part per billion (ppb) increase of NO2 and SO2, respectively. Asthma hospital admissions were significantly increased for PM10 and CO in adults, and for PM10, CO, NO2 and SO2 in the elderly.^
Resumo:
Few recent estimates of childhood asthma incidence exist in the literature, although the importance of incidence surveillance for understanding asthma risk factors has been recognized. Asthma prevalence, morbidity and mortality reports have repeatedly shown that low-income children are disproportionately impacted by the disease. The aim of this study was to demonstrate the utility of Medicaid claims data for providing statewide estimates of asthma incidence. Medicaid Analytic Extract (MAX) data for Texas children ages 0-17 enrolled in Medicaid between 2004 and 2007 were used to estimate incidence overall and by age group, gender, race and county of residence. A 13+ month period of continuous enrollment was required in order to distinguish incident from prevalent cases identified in the claims data. Age-adjusted incidence of asthma was 4.26/100 person-years during 2005-2007, higher than reported in other populations. Incidence rates decreased with age, were higher for males than females, differed by race, and tended to be higher in rural than urban areas. With this study, we were able to demonstrate the utility of MAX data for estimating asthma incidence, and create a dataset of incident cases to use in further analysis. ^ In subsequent analyses, we investigated a possible association between ambient air pollutants and incident asthma among Medicaid-enrolled children in Harris County Texas between 2005 and 2007. This population is at high risk for asthma, and living in an area with historically poor air quality. We used a time-stratified case-crossover design and conditional logistic regression to calculate odds ratios, adjusted for weather variables and aeroallergens, to assess the effect of increases in ozone, NO2 and PM2.5 concentrations on risk of developing asthma. Our results show that a 10 ppb increase in ozone was significantly associated with asthma during the warm season (May-October), with the strongest effect seen when a 6-day cumulative lag period was used to compute the exposure metric (OR=1.05, 95% CI, 1.02–1.08). Similar results were seen for NO2 and PM 2.5 (OR=1.07, 95% CI, 1.03–1.11 and OR=1.12, 95% CI, 1.03–1.22, respectively). PM2.5 also had significant effects in the cold season (November-April), 5-day cumulative lag: OR=1.11, 95% CI, 1.00–1.22. When compared with children in the lowest quartile of O3 exposure, the risk for children in the highest quartile was 20% higher. This study indicates that these pollutants are associated with newly-diagnosed childhood asthma in this low-income urban population, particularly during the summer months. ^