8 resultados para [JEL:C79] Mathematical and Quantitative Methods - Game Theory and Bargaining Theory - Other

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In epidemiology literature, it is often required to investigate the relationships between means where the levels of experiment are actually monotone sets forming a partition on the range of sampling values. With this need, the analysis of these group means is generally performed using classical analysis of variance (ANOVA). However, this method has never been challenged. In this dissertation, we will formulate and present our examination of its validity. First, the classical assumptions of normality and constant variance are not always true. Second, under the null hypothesis of equal means, the test statistic for the classical ANOVA technique is still valid. Third, when the hypothesis of equal means is rejected, the classical analysis techniques for hypotheses of contrasts are not valid. Fourth, under the alternative hypothesis, we can show that the monotone property of levels leads to the conclusion that the means are monotone. Fifth, we propose an appropriate method for handing the data in this situation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex diseases such as cancer result from multiple genetic changes and environmental exposures. Due to the rapid development of genotyping and sequencing technologies, we are now able to more accurately assess causal effects of many genetic and environmental factors. Genome-wide association studies have been able to localize many causal genetic variants predisposing to certain diseases. However, these studies only explain a small portion of variations in the heritability of diseases. More advanced statistical models are urgently needed to identify and characterize some additional genetic and environmental factors and their interactions, which will enable us to better understand the causes of complex diseases. In the past decade, thanks to the increasing computational capabilities and novel statistical developments, Bayesian methods have been widely applied in the genetics/genomics researches and demonstrating superiority over some regular approaches in certain research areas. Gene-environment and gene-gene interaction studies are among the areas where Bayesian methods may fully exert its functionalities and advantages. This dissertation focuses on developing new Bayesian statistical methods for data analysis with complex gene-environment and gene-gene interactions, as well as extending some existing methods for gene-environment interactions to other related areas. It includes three sections: (1) Deriving the Bayesian variable selection framework for the hierarchical gene-environment and gene-gene interactions; (2) Developing the Bayesian Natural and Orthogonal Interaction (NOIA) models for gene-environment interactions; and (3) extending the applications of two Bayesian statistical methods which were developed for gene-environment interaction studies, to other related types of studies such as adaptive borrowing historical data. We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions (epistasis) and gene by environment interactions in the same model. It is well known that, in many practical situations, there exists a natural hierarchical structure between the main effects and interactions in the linear model. Here we propose a model that incorporates this hierarchical structure into the Bayesian mixture model, such that the irrelevant interaction effects can be removed more efficiently, resulting in more robust, parsimonious and powerful models. We evaluate both of the 'strong hierarchical' and 'weak hierarchical' models, which specify that both or one of the main effects between interacting factors must be present for the interactions to be included in the model. The extensive simulation results show that the proposed strong and weak hierarchical mixture models control the proportion of false positive discoveries and yield a powerful approach to identify the predisposing main effects and interactions in the studies with complex gene-environment and gene-gene interactions. We also compare these two models with the 'independent' model that does not impose this hierarchical constraint and observe their superior performances in most of the considered situations. The proposed models are implemented in the real data analysis of gene and environment interactions in the cases of lung cancer and cutaneous melanoma case-control studies. The Bayesian statistical models enjoy the properties of being allowed to incorporate useful prior information in the modeling process. Moreover, the Bayesian mixture model outperforms the multivariate logistic model in terms of the performances on the parameter estimation and variable selection in most cases. Our proposed models hold the hierarchical constraints, that further improve the Bayesian mixture model by reducing the proportion of false positive findings among the identified interactions and successfully identifying the reported associations. This is practically appealing for the study of investigating the causal factors from a moderate number of candidate genetic and environmental factors along with a relatively large number of interactions. The natural and orthogonal interaction (NOIA) models of genetic effects have previously been developed to provide an analysis framework, by which the estimates of effects for a quantitative trait are statistically orthogonal regardless of the existence of Hardy-Weinberg Equilibrium (HWE) within loci. Ma et al. (2012) recently developed a NOIA model for the gene-environment interaction studies and have shown the advantages of using the model for detecting the true main effects and interactions, compared with the usual functional model. In this project, we propose a novel Bayesian statistical model that combines the Bayesian hierarchical mixture model with the NOIA statistical model and the usual functional model. The proposed Bayesian NOIA model demonstrates more power at detecting the non-null effects with higher marginal posterior probabilities. Also, we review two Bayesian statistical models (Bayesian empirical shrinkage-type estimator and Bayesian model averaging), which were developed for the gene-environment interaction studies. Inspired by these Bayesian models, we develop two novel statistical methods that are able to handle the related problems such as borrowing data from historical studies. The proposed methods are analogous to the methods for the gene-environment interactions on behalf of the success on balancing the statistical efficiency and bias in a unified model. By extensive simulation studies, we compare the operating characteristics of the proposed models with the existing models including the hierarchical meta-analysis model. The results show that the proposed approaches adaptively borrow the historical data in a data-driven way. These novel models may have a broad range of statistical applications in both of genetic/genomic and clinical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Black and Hispanic youth experience the largest burden of sexually transmitted infections, teen pregnancy, and childbirth (Hamilton, Martin, & Ventura, 2011). Minority youth are disporportionately more likely to sexually debut at every age and debut before the age of 13 compared to whites (Centers for Disease Control and Prevention, 2011). However, there is little known about pre-coital sexual activity or protective parental factors in early adolscent minority youth. Parental factors such as parent-child communication and parental monitoring influence adolescent sexual behaviors and pre-coital sexual behaviors in early adolescence. Three distinct methods were used in this dissertation. Study one used qualitative methods, semi-structured, in-depth, individual interviews, to explore parent-child communication in African American mother-early adolescent son dyads. Study two used quantitative methods, secondary data analysis of a cross sectional study, to conduct a moderation analysis. For study three, I conducted a systematic review of parent-based adolescent sexual health interventions. Study one found that mothers feel comfortable talking about sex with adolescents, provide a two-prong sexual health message, and want their sons to tell their when they are thinking of having sex. Study found that parental monitoring moderates the relation between parent-child communication and pre-coital sexual behaviors. Study three found that interventions use a variety of theory, methods, and strategies and that no parent-based programs target faith-based organizations, mother-son or father-daughter dyads, or parents of LGBTQ youth. Adolescent sexual health interventions should consider addressing youth-to-parent disclosure of sexual activity or intentions to debut, addressing both parent-child sexual health communication and parental monitoring, and using a theoretical framework.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite major advances in the study of glioma, the quantitative links between intra-tumor molecular/cellular properties, clinically observable properties such as morphology, and critical tumor behaviors such as growth and invasiveness remain unclear, hampering more effective coupling of tumor physical characteristics with implications for prognosis and therapy. Although molecular biology, histopathology, and radiological imaging are employed in this endeavor, studies are severely challenged by the multitude of different physical scales involved in tumor growth, i.e., from molecular nanoscale to cell microscale and finally to tissue centimeter scale. Consequently, it is often difficult to determine the underlying dynamics across dimensions. New techniques are needed to tackle these issues. Here, we address this multi-scalar problem by employing a novel predictive three-dimensional mathematical and computational model based on first-principle equations (conservation laws of physics) that describe mathematically the diffusion of cell substrates and other processes determining tumor mass growth and invasion. The model uses conserved variables to represent known determinants of glioma behavior, e.g., cell density and oxygen concentration, as well as biological functional relationships and parameters linking phenomena at different scales whose specific forms and values are hypothesized and calculated based on in vitro and in vivo experiments and from histopathology of tissue specimens from human gliomas. This model enables correlation of glioma morphology to tumor growth by quantifying interdependence of tumor mass on the microenvironment (e.g., hypoxia, tissue disruption) and on the cellular phenotypes (e.g., mitosis and apoptosis rates, cell adhesion strength). Once functional relationships between variables and associated parameter values have been informed, e.g., from histopathology or intra-operative analysis, this model can be used for disease diagnosis/prognosis, hypothesis testing, and to guide surgery and therapy. In particular, this tool identifies and quantifies the effects of vascularization and other cell-scale glioma morphological characteristics as predictors of tumor-scale growth and invasion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite major advances in the study of glioma, the quantitative links between intra-tumor molecular/cellular properties, clinically observable properties such as morphology, and critical tumor behaviors such as growth and invasiveness remain unclear, hampering more effective coupling of tumor physical characteristics with implications for prognosis and therapy. Although molecular biology, histopathology, and radiological imaging are employed in this endeavor, studies are severely challenged by the multitude of different physical scales involved in tumor growth, i.e., from molecular nanoscale to cell microscale and finally to tissue centimeter scale. Consequently, it is often difficult to determine the underlying dynamics across dimensions. New techniques are needed to tackle these issues. Here, we address this multi-scalar problem by employing a novel predictive three-dimensional mathematical and computational model based on first-principle equations (conservation laws of physics) that describe mathematically the diffusion of cell substrates and other processes determining tumor mass growth and invasion. The model uses conserved variables to represent known determinants of glioma behavior, e.g., cell density and oxygen concentration, as well as biological functional relationships and parameters linking phenomena at different scales whose specific forms and values are hypothesized and calculated based on in vitro and in vivo experiments and from histopathology of tissue specimens from human gliomas. This model enables correlation of glioma morphology to tumor growth by quantifying interdependence of tumor mass on the microenvironment (e.g., hypoxia, tissue disruption) and on the cellular phenotypes (e.g., mitosis and apoptosis rates, cell adhesion strength). Once functional relationships between variables and associated parameter values have been informed, e.g., from histopathology or intra-operative analysis, this model can be used for disease diagnosis/prognosis, hypothesis testing, and to guide surgery and therapy. In particular, this tool identifies and quantifies the effects of vascularization and other cell-scale glioma morphological characteristics as predictors of tumor-scale growth and invasion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Empirical evidence and theoretical studies suggest that the phenotype, i.e., cellular- and molecular-scale dynamics, including proliferation rate and adhesiveness due to microenvironmental factors and gene expression that govern tumor growth and invasiveness, also determine gross tumor-scale morphology. It has been difficult to quantify the relative effect of these links on disease progression and prognosis using conventional clinical and experimental methods and observables. As a result, successful individualized treatment of highly malignant and invasive cancers, such as glioblastoma, via surgical resection and chemotherapy cannot be offered and outcomes are generally poor. What is needed is a deterministic, quantifiable method to enable understanding of the connections between phenotype and tumor morphology. Here, we critically assess advantages and disadvantages of recent computational modeling efforts (e.g., continuum, discrete, and cellular automata models) that have pursued this understanding. Based on this assessment, we review a multiscale, i.e., from the molecular to the gross tumor scale, mathematical and computational "first-principle" approach based on mass conservation and other physical laws, such as employed in reaction-diffusion systems. Model variables describe known characteristics of tumor behavior, and parameters and functional relationships across scales are informed from in vitro, in vivo and ex vivo biology. We review the feasibility of this methodology that, once coupled to tumor imaging and tumor biopsy or cell culture data, should enable prediction of tumor growth and therapy outcome through quantification of the relation between the underlying dynamics and morphological characteristics. In particular, morphologic stability analysis of this mathematical model reveals that tumor cell patterning at the tumor-host interface is regulated by cell proliferation, adhesion and other phenotypic characteristics: histopathology information of tumor boundary can be inputted to the mathematical model and used as a phenotype-diagnostic tool to predict collective and individual tumor cell invasion of surrounding tissue. This approach further provides a means to deterministically test effects of novel and hypothetical therapy strategies on tumor behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Health care providers face the problem of trying to make decisions with inadequate information and also with an overload of (often contradictory) information. Physicians often choose treatment long before they know which disease is present. Indeed, uncertainty is intrinsic to the practice of medicine. Decision analysis can help physicians structure and work through a medical decision problem, and can provide reassurance that decisions are rational and consistent with the beliefs and preferences of other physicians and patients. ^ The primary purpose of this research project is to develop the theory, methods, techniques and tools necessary for designing and implementing a system to support solving medical decision problems. A case study involving “abdominal pain” serves as a prototype for implementing the system. The research, however, focuses on a generic class of problems and aims at covering theoretical as well as practical aspects of the system developed. ^ The main contributions of this research are: (1) bridging the gap between the statistical approach and the knowledge-based (expert) approach to medical decision making; (2) linking a collection of methods, techniques and tools together to allow for the design of a medical decision support system, based on a framework that involves the Analytic Network Process (ANP), the generalization of the Analytic Hierarchy Process (AHP) to dependence and feedback, for problems involving diagnosis and treatment; (3) enhancing the representation and manipulation of uncertainty in the ANP framework by incorporating group consensus weights; and (4) developing a computer program to assist in the implementation of the system. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. This study was designed to evaluate the effects of the Young Leaders for Healthy Change program, an internet-delivered program in the school setting that emphasized health advocacy skills-development, on nutrition and physical activity behaviors among older adolescents (13–18 years). The program consisted of online curricular modules, training modules, social media, peer and parental support, and a community service project. Module content was developed based on Social Cognitive Theory and known determinants of behavior for older adolescents. ^ Methods. Of the 283 students who participated in the fall 2011 YL program, 38 students participated in at least ten of the 12 weeks and were eligible for this study. This study used a single group-only pretest/posttest evaluation design. Participants were 68% female, 58% white/Caucasian, 74% 10th or 11th graders, and 89% mostly A and/or B students. The primary behavioral outcomes for this analysis were participation in 60-minutes of physical activity per day, 20-minutes of vigorous- or moderate- intensity physical activity (MVPA) participation per day, television and computer time, fruit and vegetable (FV) intake, sugar-sweetened beverage intake, and consumption of breakfast, home-cooked meals, and fast food. Other outcomes included knowledge, beliefs, and attitudes related to healthy eating, physical activity, and advocacy skills. ^ Findings. Among the 38 participants, no significant changes in any variables were observed. However, among those who did not previously meet behavioral goals there was an 89% increase in students who participated in more than 20 minutes of MVPA per day and a 58% increase in students who ate home-cooked meals 5–7 days per week. The majority of participants met program goals related to knowledge, beliefs, and attitudes prior to the start of the program. Participants reported either maintaining or improving to the goal at posttest for all items except FV intake knowledge, taste and affordability of healthy foods, interest in teaching others about being healthy, and ease of finding ways to advocate in the community. ^ Conclusions. The results of this evaluation indicated that promoting healthy behaviors requires different strategies than maintaining healthy behaviors among high school students. In the school setting, programs need to target the promotion and maintenance of health behaviors to engage all students who participate in the program as part of a class or club activity. Tailoring the program using screening and modifying strategies to meet the needs of all students may increase the potential reach of the program. The Transtheoretical Model may provide information on how to develop a tailored program. Additional research on how to utilize the constructs of TTM effectively among high school students needs to be conducted. Further evaluation studies should employ a more expansive evaluation to assess the long-term effectiveness of health advocacy programming.^