148 resultados para SUPPRESSOR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer therapy and tumor treatment remain unsolved puzzles. Genetic screening for tumor suppressor genes in Drosophila revealed the Hippo-signaling pathway as a kinase cascade consisting of five core components. Disrupting the pathway by deleting the main component genes breaks the balance of cell proliferation and apoptosis and results in epithelial tissue tumorigenesis. The pathway is therefore believed to be a tumor suppressor pathway. However, a corresponding role in mammals is yet to be determined. Our lab began to investigate the tumor suppression function of the potent mammalian Hippo pathway by putting floxed alleles into the mouse genome flanking the functional-domain-expressing exons in each component (Mst1, Mst2, Sav1, Lats1 and Lats2). These mice were then crossed with different cre-mouse lines to generate conditional knockout mice. Results indicate a ubiquitous tumor suppression function of these components, predominantly in the liver. A further liver specific analysis of the deletion mutation of these components, as well as the Yap/Taz double deletion mutation, reveals essential roles of the Hippo pathway in regulating hepatic quiescence and embryonic liver development. One of the key cellular mechanisms for the Hippo pathway’s involvement in these liver biological events is likely its cell cycle regulation function. Our work will help to develop potential therapeutic approaches for liver cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tumor Suppressor Candidate 2 (TUSC2) is a novel tumor suppressor gene located in the human chromosome 3p21.3 region. TUSC2 mRNA transcripts could be detected on Northern blots in both normal lung and some lung cancer cell lines, but no endogenous TUSC2 protein could be detected in a majority of lung cancer cell lines. Mechanisms regulating TUSC2 protein expression and its inactivation in primary lung cancer cells are largely unknown. We investigated the role of the 5’- and 3’-untranslated regions (UTRs) of the TUSC2 gene in the regulation of TUSC2 protein expression. We found that two small upstream open-reading frames (uORFs) in the 5’UTR of TUSC2 could markedly inhibit the translational initiation of TUSC2 protein by interfering with the “scanning” of the ribosome initiation complexes. Site-specific stem-loop array reverse transcription-polymerase chain reaction (SLA-RT-PCR) verified several micoRNAs (miRNAs) targeted at 3’UTR and directed TUSC2 cleavage and degradation. In addition, we used the established let-7-targeted high mobility group A2 (Hmga2) mRNA as a model system to study the mechanism of regulation of target mRNA by miRNAs in mammalian cells under physiological conditions. There have been no evidence of direct link between mRNA downregulation and mRNA cleavages mediated by miRNAs. Here we showed that the endonucleolytic cleavages on mRNAs were initiated by mammalian miRNA in seed pairing style. Let-7 directed cleavage activities among the eight predicted potential target sites have varied efficiency, which are influenced by the positional and the structural contexts in the UTR. The 5’ cleaved RNA fragments were mostly oligouridylated at their 3’-termini and accumulated for delayed 5’–3’ degradation. RNA fragment oligouridylation played important roles in marking RNA fragments for delayed bulk degradation and in converting RNA degradation mode from 3’–5’ to 5’–3’ with cooperative efforts from both endonucleolytic and non-catalytic miRNA-induced silencing complex (miRISC). Our findings point to a mammalian miRNA-mediated mechanism for the regulation of mRNA that miRNA can decrease target mRNA through target mRNA cleavage and uridine addition

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gastrointestinal Stromal Tumors (GIST) are sarcomas driven by gain-of-function mutations of KIT or PDGFRA. Although, the introduction of tyrosine kinase inhibitors has dramatically changed the history of this disease, evidences emerge that inhibition of KIT or PDGFRA are not sufficient to cure patients. The developmental pathway Notch has a critical role in the cell fate, regulating cell proliferation and differentiation. Dysregulation of Notch pathway has been implicated in a wide variety of cancers functioning as a tumor promoter or a tumor suppressor in a cell context dependent manner. Given that Notch activation deregulates the morphogenesis of mesenchymal cells in the GI track, that Notch acts as a tumor suppressor in neuroendocrine tumors, and finally that the cell of origin of GIST are the Interstitial Cell of Cajal that arise from a mesenchymal origin with some neuroendocrine features, we hypothesized that Notch pathway signaling may play a role in growth, survival and differentiation of GIST cells. To test this hypothesis, we genetically and pharmacologically manipulated the Notch pathway in human GIST cells. In this study, we demonstrated that constitutively active intracellular domain of Notch1 (ICN-1) expression potently induced growth arrest and downregulated KIT expression. We have performed a retrospective analysis of 15 primary GIST patients and found that high mRNA level of Hes1, a major target gene of Notch pathway, correlated with a significantly longer relapse-free survival. Therefore, we have established that treatment with the FDA approved histone deacetylase inhibitor SAHA (Vorinostat) caused dose-dependent upregulation of Notch1 expression and a parallel decrease in viability in these cells. Retroviral silencing of downstream targets of Notch with dominant negative Hes-1 as well as pharmacological inhibition of Notch pathway with a γ-secretase inhibitor partially rescued GIST cells from SAHA treatment. Taken together these results identify anti-tumor effect of Notch1 and a negative cross-talk between Notch1 and KIT pathways in GIST. Consequently, we propose that activation of this pathway with HDAC inhibitors may be a potential therapeutic strategy for GIST patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the United Statesand Europe. CLL patients with deletion of chromosome 17p, where the tumor suppressor p53 gene is located, often develop a more aggressive disease with poor clinical outcomes. However, the underlying mechanism remains unclear. In order to understand the underneath mechanism in vivo, I have recently generated mice with Eu-TCL1-Tg:p53-/- genotype and showed that these mice develop aggressive leukemia that resembles human CLL with 17p deletion. The Eu-TCL1-Tg:p53-/- mice developed CLL disease at 3-4 months, significantly earlier than the parental Eu-TCL1-Tg mice that developed CLL disease at 8-12 months. Flow cytometry analysis showed that the CD5+/ IgM+ cell population appeared in the peritoneal cavity, bone marrow, and the spleens of Eu-TCL1-Tg:p53-/- mice significantly earlier than that of the parental Eu-TCL1-Tg mice. Massive infiltration and accumulation of leukemia cells were found in the spleen and peritoneal cavity. In vitro study showed that the leukemia cells isolated from the Eu-TCL1-Tg:p53-/- mice were more resistant to fludarabine treatment than the leukemia cells isolated from spleens of Eu-TCL1-Tg mice. Interestingly, TUNEL assay revealed that there was higher apoptotic cell death found in the Eu-TCL1-Tg spleen tissue compared to the spleens of the Eu-TCL1-Tg:p53-/- mice, suggesting that the loss of p53 compromises the apoptotic process in vivo, and this might in part explain the drug resistant phenotype of CLL cells with 17p-deletion. In the present study, we further demonstrated that the p53 deficiency in the TCL1 transgenic mice resulted in significant down-regulation of microRNAs miR-15a and miR16-1, associated with a substantial up-regulation of Mcl-1, suggesting that the p53-miR15a/16-Mcl-1 axis may play an important role in CLL pathogenesis. Interestingly, we also found that loss of p53 resulted in a significant decrease in expression of the miR-30 family especially miR-30d in leukemia lymphocytes from the Eu-TCL1-Tg:p53-/- mice. Such down-regulation of those microRNAs and up-regulation of Mcl-1 were also found in primary leukemia cells from CLL patients with 17p deletion. To further exam the biological significance of decrease in the miR-30 family in CLL, we investigated the potential involvement of EZH2 (enhancer of zeste homolog 2), a component of the Polycomb repressive complex known to be a downstream target of miR-30d and plays a role in disease progression in several solid cancers. RT-PCR and western blot analyses showed that both EZH2 mRNA transcript and protein levels were significantly increased in the lymphocytes of Eu-TCL1-Tg:p53-/- mice relative to Eu-TCL1-Tg mice. Exposure of leukemia cells isolated from Eu-TCL1-Tg:p53-/- mice to the EZH2 inhibitor 3-deazaneplanocin (DZNep) led to induction of apoptosis, suggesting EZH2 may play a role in promoting CLL cell survival and this may contribute to the aggressive phenotype of CLL with loss of p53. Our study has created a novel CLL mouse model, and suggests that the p53/miR15a/16-Mcl-1 axis & p53/miR30d-EZH2 may contribute to the aggressive phenotype and drug resistance in CLL cells with loss of p53.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neu gene (also c-erbB-2 or HER2) encodes a 185 kilodalton protein that is frequently overexpressed in breast, ovarian and non-small cell lung cancers. Study of the regulation of neu indicates that neu gene expression can be modulated by c-myc or by the adenovirus 5 E1a gene product. This study demonstrates that the transforming protein, large T antigen, of the simian virus 40 represses neu promoter activity. Repression of neu by large T antigen is mediated through the region $-$172 to $-$79 (relative to first ATG) of the neu promoter--unlike through $-$312 to $-$172 for c-myc or E1a. This suggests a different pathway for repression of neu by large T antigen. The 10 amino acid region of large T required for binding the tumor suppressor, retinoblastoma gene product, Rb, is not necessary for repression of neu. Moreover, the tumor suppressors, Rb and p53 can independently inhibit neu promoter activity. Rb inhibits neu through a 10 base pair G-rich enhancer (GTG element) ($-$243 to $-$234) and also through regions close to transcription initiation sites ($-$172 to $-$79). Mutant Rb unable to complex large T is able to repress the region close to transcription initiation but not the GTG enhancer. Thus, Rb inhibits the two regulatory domains of the neu gene by different mechanisms. Both Rb and p53 can repress the transforming activity of activated neu in focus forming assays. These data provide evidence that tumor suppressors regulate expression of growth stimulatory genes such as neu. Therefore, one reason for the overexpression of neu that is frequently seen in breast cancer cells may be due to functional inactivation of Rb and p53 which is also a common occurrence in breast cancer cells. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colorectal cancer is a leading cause of cancer mortality and early detection can significantly improve the clinical outcome. Most colorectal cancers arise from benign neoplastic lesions recognized as adenomas. Only a small percentage of all adenomas will become malignant. Thus, there is a need to identify specific markers of malignant potential. Studies at the molecular level have demonstrated an accumulation of genetic alterations, some hereditary but for the most occurring in somatic cells. The most common are the activation of ras, an oncogene involved in signal transduction, and the inactivation of p53, a tumor suppressor gene implicated in cell cycle regulation. In this study, 38 carcinomas, 95 adenomas and 20 benign polyps were analyzed by immunohistochemistry for the abnormal expression of p53 and ras proteins. An index of cellular proliferation was also measured by labeling with PCNA. A general overexpression of p53 was immunodetected in 66% of the carcinomas, while 26% of adenomas displayed scattered individual positive cells or a focal high concentration of positive cells. This later was more associated with severe dysplasia. Ras protein was detected in 37% of carcinomas and 32% of adenomas mostly throughout the tissue. p53 immunodetection was more frequent in adenomas originating in colons with synchronous carcinomas, particularly in patients with familial adenomatous polyposis and it may be a useful marker in these cases. Difference in the frequency of p53 and ras alterationbs was related to the location of the neoplasm. Immunodetection of p53 protein was correlated to the presence of a mutation in p53 gene at exon 7 and 5 in 4/6 carcinomas studied and 2 villous adenomas. Thus, we characterized in adenomas the abnormal expression of two proteins encoded by the most commonly altered genes in colorectal cancer. p53 alteration appears to be more specifically associated with transition to malignancy than ras. By using immunohistochemistry, a technique that keeps the architecture of the tissue intact, it was possible to correlate these alterations to histopathological characteristics that were associated with higher risks for transformation: villous content, dysplasia and size of adenoma. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

p53 is a tumor suppressor gene that is the most frequent target inactivated in cancers. Overexpression of wild-type p53 in rat embryo fibroblasts suppresses foci formation by other cooperating oncogenes. Introduction of wild-type p53 into cells that lack p53 arrests them at the G1/S boundary and reverses the transformed phenotype of some cells. The function of p53 in normal cells is illustrated by the ability of p53 to arrest cells at G1 phase of the cell cycle upon exposure to DNA-damaging agents including UV-irradiation and biosynthesis inhibitors.^ Since the amino acid sequence of p53 suggested that it may function as a transcription factor, we used GAL4 fusion assays to test that possibility. We found that wild-type p53 could specifically activate transcription when anchored by the GAL4 DNA binding domain. Mutant p53s, which have lost the ability to suppress foci formation by other oncogenes, were not able to activate transcription in this assay. Thus, we established a direct correlation between the tumor suppression and transactivation functions of p53.^ Having learned that p53 was a transcriptional activator, we next sought targets of p53 activation. Because many transcription factors regulate their own expression, we tested whether p53 had this autoregulatory property. Transient expression of wild-type p53 in cells increased the levels of endogenous p53 mRNA. Cotransfection of p53 together with a reporter bearing the p53 promoter confirmed that wild-type p53 specifically activates its own promoter. Deletion analysis from both the 5$\sp\prime$ and 3$\sp\prime$ ends of the promoter minimized the region responsible for p53 autoregulation to 45 bp. Methylation interference identified nucleotides involved in protein-DNA interaction. Mutations within this protected site specifically eliminated the response of the promoter to p53. In addition, multiple copies of this element confer responsiveness to wild-type p53 expression. Thus, we identified a F53 responsive element within the p53 promoter.^ The presence of a consensus NF-$\kappa$B site in the p53 promoter suggested that NF-KB may regulate p53 expression. Gel-shift experiments showed that both the p50 homodimer and the p50/p65 heterodimer bind to the p53 promoter. In addition, the p65 subunit of NF-$\kappa$B activates the p53 promoter in transient transfection experiments. TNF $\alpha$, a natural NF-$\kappa$B inducer, also activates the p53 promoter. Both p65 activation and TNF $\alpha$ induction require an intact NF-$\kappa$B site in the p53 promoter. Since NF-$\kappa$B activation occurs as a response to stress and p53 arrests cells in G1/S, where DNA repair occurs, activation of p53 by NF-$\kappa$B could be a mechanism by which cells recover from stress.^ In conclusion, we provided the first data that wild-type p53 functions as a transcriptional activator, whereas mutant p53 cannot. The correlation between growth suppression and transcriptional activation by p53 implies a pathway of tumor suppression. We have analyzed upstream components of the pathway by the identification of both p53 and NF-$\kappa$B as regulators of the p53 promoter. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tumor suppressor p53 is a phosphoprotein which functions as a transcriptional activator. By monitoring the transcriptional activity, we studied how p53 functions is regulated in relation to cell growth and contact inhibition. When cells were arrested at G1 phase of the cell cycle by contact inhibition, we found that p53 transactivation function was suppressed. When contact inhibition was overridden by cyclin E overexpression which stimulates cell cycle progression, p53 function was restored. This observation led to the development of a cell density assay to study the regulation of p53 function during cell cycle for the functional significance of p53 phosphorylation. The murine p53 is phosphorylated at serines 7, 9, 12, 18, 37, 312 and 389. To understand the role of p53 phosphorylation, we generated p53 constructs encoding serine-to-alanine or serine-to-glutamate mutations at these codons. The transcriptional activity were measured in cells capable of contact inhibition. In low-density cycling cells, no difference in transcriptional activity was found between wild type p53 and any of the mutants. In contact-inhibited cells, however, only mutations of p53 at serine 389 resulted in altered responses to cell cycle arrest and to cyclin E overexpression. The mutant with serine-to-glutamate substitution at codon 389 retained its function in contact inhibited cells. Cyclin E overexpression in these cells induced p53 phosphorylation at serine 389. Furthermore, we showed that phosphorylation at serine 389 regulates p53 DNA binding activity. Our findings implicate that phosphorylation is an important mechanism for p53 activation.^ p53 is the most frequently mutated gene in human tumors. To study the mechanism of p53 inactivation by mutations, we carried out detailed analysis of a murine p53 mutation with an arginine-to-tryptophane substitution at codon 245. The corresponding human p53 mutation at amino acid 248 is the most frequently mutated codon in tumors. We showed that this mutant is inactive in suppressing focus formation, binding to DNA and transactivation. Structural analysis revealed that this mutant assumes the wild type protein conformation. These findings define a novel class of p53 mutations and help to understand structure-function relationship of p53. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Retinoblastoma tumor suppressor gene (RB) plays a role in a variety of human cancers. Experimental analyses have indicated that the protein product of the RB gene (pRb) plays a role in cell cycle regulation, and that this protein is required in cellular differentiation, senescence, and cell survival. pRb function is dependent on its ability to bind to cellular factors. There are multiple protein binding domains within pRb. Mutations within these domains which eliminate the ability of pRb to bind its targets result in loss of function. Loss of pRb function leads to tumorigenesis, although uncontrolled cellular proliferation is not a universal response to pRb inactivation. The ultimate response to the loss of pRb is influenced by both the genetic and epigenetic environments. Targeted disruption of RB in mice results in embryonic lethality, demonstrating the requirement for functional pRb in development. Close examination of various tissues from the embryos which lack wildtype RB shows problems in differentiation as well as showing induction of apoptosis. Although disruption of RB has provided useful information, complete inactivation of a gene precludes the possibility of discovering the functions that separate domains may have within the system. Creation of a dominant negative mutant by domain deletion whose phenotype is expressed in the presence of the wildtype may provide information about the intermediate functions of the protein. In addition, tissue specific targeting of a dominant negative mutant of pRb allows for comprehensive analysis of pRb function in organogenesis. In this thesis, a series of RB deletion mutants were created and tested for dominant negative activity as well as cellular localization. A tissue culture assay for dominant negative activity was developed which screens for the phenotype of apoptosis due to loss of pRb function. Two mutants from this series scored positive for dominant negative activity in this assay. The effect of these mutants within the assay environment can be explained by a model in which pRb acts as a facilitator of cell fate pathway decisions. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combination of psoralen and ultraviolet-A radiation, commonly referred to as "PUVA," is widely used in the treatment of psoriasis. However, PUVA treatment increases the risk of developing skin cancer in psoriasis patients and induces skin cancer in mice. It is, however unknown whether the increased incidence of skin cancer in PUVA treated psoriasis patients is due to the carcinogenic effects of PUVA therapy or due to an indirect effect such as immunosuppression, which can permit the growth of tumors induced by UVB radiation. In this study, we used the p53 tumor suppressor gene as a molecular marker to determine whether PUVA-induced mouse skin cancers contain unique mutations in p53 that are different from UV-induced mutations, and if so, determine whether skin cancers from PUVA treated patients have PUVA-type or UV-type p53 mutations. Since the DNA lesions induced by PUVA are quite different from those induced by UV, we hypothesize that p53 mutations induced by PUVA may also be different from those induced by UV.^ Analysis of PUVA-induced murine skin cancers for p53 mutations revealed that 14 of 15 (93%) missense mutations detected in these cancers were localized at 5$\sp\prime$-TA/5$\sp\prime$-TAT sites, potential sites of psoralen photoadditions. Mutations at these sequences are exceedingly rare in UV-induced murine skin cancers. In addition, PUVA-induced murine skin cancers did not contain UV signature (C $\to$ T or CC $\to$ TT transitions) mutations in p53. These results suggest that PUVA induces unique mutations in p53 that can be distinguished from those induced by UV.^ Next we determined whether SCCs arising in PUVA treated psoriasis patients have PUVA-type or UV-type p53 mutations. The results indicated that 16 of 25 (64%) missense p53 mutations detected in SCCs from PUVA treated patients were located at 5$\sp\prime$-TG, 5$\sp\prime$-TA and 5$\sp\prime$-TT sites, putative sites of psoralen photobinding. Interestingly, about 32% of p53 mutations detected in SCCs from PUVA treated patients had the UV signature. Taken together these results suggest that both PUVA and UVB play a role in the development of SCCs in psoriasis patients undergoing PUVA therapy. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HER-2/neu is a receptor tyrosine kinase highly homologous with epidermal growth factor receptor. Overexpression and/or amplification of HER-2/neu has been implicated in the genesis of a number of human cancers, especially breast and ovarian cancers. Transcriptional upregulation has been shown to contribute significantly to the overexpression of this gene. Studies on the transcriptional regulation of HER-2/neu gene are important for understanding the mechanism of cell transformation and developing the therapeutic strategies to block HER-2/neu-mediated cancers. PEA3 is a DNA binding transcriptional factor and its consensus sequence exists on the HER-2/neu promoter. To examine the role of PEA3 in HER-2/neu expression and cell transformation, we transfected PEA3 into the human breast and ovarian cancer cells that overexpress HER-2/neu and showed that PEA3 dramatically represses HER-2/neu transcription. PEA3 suppresses the oncogenic neu-mediated transformation in mouse fibroblast NIH 3T3 cells. Expression of PEA3 selectively blocks the growth of human cancer cells that overexpress HER-2/neu and inhibits their colony formation. It does not occur in the cancer cells expressing basal level of HER-2/neu. Further studies in the orthotopic ovarian cancer model demonstrated that expression of PEA3 preferentially inhibits growth and tumor development of human cancer cells that overexpress HER-2/neu, the tumor-bearing mice survived significantly longer if treated by injection of the PEA3-liposome complex intraperitoneally. Immunoblotting and immunohistochemical analysis of the tumor tissues indicated that PEA3 mediates the tumor suppression activity through targeting HER-2/neu-p185. Thus, PEA3 is a negative regulator of HER-2/neu gene expression and functions as a tumor suppressor gene in the HER-2/neu-overexpressing human cancer cells.^ The molecular mechanisms of PEA3 mediated transcriptional repression were investigated. PEA3 binds specifically at the PEA3 site on HER-2/neu promoter and this promoter-binding is required for the PEA3 mediated transcriptional repression. Mutation of the PEA3 binding site on HER-2/neu promoter causes decreased transcriptional activity, indicating that the PEA3 binding site is an enhancer-like element in the HER-2/neu-overexpressing cells. We therefore hypothesized that in the HER-2/neu-overexpressing cells, PEA3 competes with a transactivator for binding to the PEA3 site, preventing the putative factor from activating the transcription of HER-2/neu. This hypothesis was supported by the data which demonstrate that PEA3 competes with another nuclear protein for binding to the HER-2/neu promoter in vitro, and expression of a truncated protein which encodes the DNA binding domain of PEA3 is sufficient to repress HER-2/neu transcription in the HER-2/neu-overexpressing human cancer cells. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellular oncogenes and tumor suppressor genes regulate cellular adhesion and proliferation, two important events in malignant transformation. Even though receptor-like protein tyrosine phosphatases (R-PTPs) can influence these events, their role in malignant transformation has not been studied. The major goal of this study was to determine whether downregulation of R-PTP$\mu$ expression in lung epithelial cells is associated with or causal to neoplastic transformation. Examination of R-PTP$\mu$ expression in normal and carcinoma cells demonstrated that lung epithelial cells expressed R-PTP$\mu$ whereas lung carcinoma cells did not, and that incubation with TGF-$\alpha$ and HGF induced a two fold increase in R-PTP$\mu$ mRNA expression. To associate the expression of R-PTP$\mu$ with neoplastic transformation, we transfected lung epithelial cells with the H-ras oncogene. Transformation resulted in the activation of the MAPK signal transduction pathway, the hyperphosphorylation of c-met, and the production of HGF. Upon analysis of R-PTP$\mu$ expression, we observed a significant decrease in R-PTP$\mu$ mRNA and protein levels suggesting that transformation can directly or indirectly downregulate the expression of R-PTP$\mu.$ TGF-$\beta$ reversed the H-ras transformed phenotype, an event directly correlated with upregulation of R-PTP$\mu.$ To provide a casual relationship between R-PTP$\mu$ and cessation of tumor cell growth, we transfected carcinoma cells with the wild type R-PTP$\mu$ cDNA. Transiently expressing cells were selected by FACS using the mAb 3D7 and plated into individual wells. Carcinoma cells positive for R-PTP$\mu$ expression did not grow into colonies whereas non-R-PTP$\mu$ expressing carcinoma cells did, suggesting that expression of R-PTP$\mu$ arrested cell growth. To better understand the growth arrest induced by R-PTP$\mu$, we transfected the H-ras transformed lung epithelial cell line (MvLu-1-ras) with R-PTP$\mu$ (MvLu-1-ras/R-PTP$\mu$). Examination of growth factor receptor phosphorylation revealed significant inhibition of c-met and EGF-R. Furthermore, these cells underwent apoptosis in the absence of serum. Taken together the data demonstrate that the downregulation of R-PTP$\mu$ expression is an important step in neoplastic transformation of lung epithelial cells and that its presence can induce apoptosis and inhibit the signaling of c-met and EGF-R, two major growth factor receptors in lung carcinoma. In conclusion, the expression of R-PTP$\mu$ is inversely correlated with neoplastic transformation, growth and survival of tumor cells. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To identify more mutations that can affect the early development of Myxococcus xanthus, the synthetic transposon TnT41 was designed and constructed. By virtue of its special features, it can greatly facilitate the processes of mutation screening/selection, mapping, cloning and DNA sequencing. In addition, it allows for the systematic discovery of genes in regulatory hierarchies using their target promoters. In this study, the minimal regulatory region of the early developmentally regulated gene 4521 was used as a reporter in the TnT41 mutagenesis. Both positive (P) mutations and negative (N) mutations were isolated based on their effects on 4521 expression.^ Four of these mutations, i.e. N1, N2, P52 and P54 were analyzed in detail. Mutations N1 and N2 are insertion mutations in a gene designated sasB. The sasB gene is also identified in this study by genetic and molecular analysis of five UV-generated 4521 suppressor mutations. The sasB gene encodes a protein without meaningful homology in the databases. The sasB gene negatively regulates 4521 expression possibly through the SasS-SasR two component system. A wild-type sasB gene is required for normal M. xanthus fruiting body formation and sporulation.^ Cloning and sequencing analysis of the P52 mutation led to the identification of an operon that encodes the M. xanthus high-affinity branched-chain amino acid transporter system. This liv operon consists of five genes designated livK, livH, livM, livC, and livF, respectively. The Liv proteins are highly similar to their counterparts from other bacteria in both amino acid sequences, functional motifs and predicted secondary structures. This system is required for development since liv null mutations cause abnormality in fruiting body formation and a 100-fold decrease in sporulation efficiency.^ Mutation P54 is a TnT41 insertion in the sscM gene of the ssc chemotaxis system, which has been independently identified by Dr. Shi's lab. The sscM gene encodes a MCP (methyl-accepting chemotaxis protein) homologue. The SscM protein is predicted to contain two transmembrane domains, a signaling domain and at least one putative methylation site. Null mutations of this gene abolish the aggregation of starving cells at a very early stage, though the sporulation levels of the mutant can reach 10% that of wild-type cells. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in the p53 tumor suppressor gene are found in over 50% of human tumors and in the germline of Li-Fraumeni syndrome families. About 80% of these mutations are missense in nature. In order to study how p53 missense mutations affect tumorigenesis in vivo, we focused on the murine p53 arg-to-his mutation at amino acid 172, which corresponds to the human hot spot mutation at amino acid 175. The double replacement procedure was employed to introduce the p53 R172H mutation into the p53 locus of ES cells and mice were generated. An additional 1bp deletion in the intron 2 splice acceptor site was detected in the same allele in mice. We named this allele p53R172HΔg. This allele makes a small amount of full length p53 mutant protein. ^ Spontaneous tumor formation and survival were studied in these mice. Mice heterozygous for the p53R172HΔg allele showed 50% survival at 17 months of age, similar to the p53+/− mice. Moreover, the p53R172HΔg/+ mice showed a distinct tumor spectrum: 55% sarcomas, including osteosarcoms, fibrosarcomas and angiosarcomas; 27% carcinomas, including lung adenocarcinomas, squamous cell carcinomas, hepatocellular carcinomas and islet cell carcinomas; and 18% lymphomas. Compared to the p53+/− mice, there was a clear increase in the frequency of carcinoma development and a decrease in lymphoma incidence. Among the sarcomas that developed, fibrosarcomas in the skin were also more frequently observed. More importantly, osteosarcomas and carinomas that developed in the p53R172HΔg/+ mice metastasized at very high frequency (64% and 67%, respectively) compared with less than 10% in the p53+/− mice. The metastatic lesions were usually found in lung and liver, and less frequently in other tissues. The altered tumor spectrum in the mice and increased metastatic potential of the tumors suggested that the p53R172H mutation represents a gain-of-function. ^ Mouse embryonic fibroblasts (MEFs) from the mice homozygous and heterozygous for the p53R172HΔg allele were studied for growth characteristics, immortalization potential and genomic instability. All of the p53R172HΔg /+ MEF lines are immortalized under a 3T3 protocol while under the same protocol p53+/− MEFs are not immortalized. Karyotype analysis showed a persistent appearance of chromosome end-to-end fusion in the MEFs both homozygous and heterozygous for the p53R172HΔg allele. These observations suggest that increased genomic instability in the cells may cause the altered tumor phenotypes. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cutaneous exposure to ultraviolet-B radiation (UVR) results in the suppression of cell-mediated immune responses such as contact hypersensitivity (CHS) and delayed-type hypersensitivity (DTH). This modulation of immune responses is mediated by local or systemic mechanisms, both of which are associated with the generation of antigen-specific suppressor T lymphocytes (Ts). UV-induced Ts have been shown to be CD3+CD4+CD8 − T cells that control multiple immunological pathways. However, the precise mechanisms involved in the generation and function of these immunoregulatory cells remain unclear. We investigated the cellular basis for the generation of UV-induced Ts lymphocytes in both local and systemic models of immune suppression, and further examined the pleiotrophic function of these immunoregulatory cells. ^ We used Thy1.1 and Thy1.2 congenic mice in a draining lymph node (DLN) cell transfer model to analyze the role played by epidermal Langerhans cells in the generation of Ts cells. We demonstrate that T cells tightly adhered to antigen-presenting cells (APC) from UV-irradiated skin are the direct progenitors of UV-induced Ts lymphocytes. Our studies also reveal that UV-induced DNA-damage in the form of cyclobutyl pyrimidine dimers (CPD) in the epidermal APC is crucial for the altered maturation of these adherent T cells into Ts. ^ We used TCR transgenic mice in an adoptive transfer model and physically tracked the antigen-specific clones during immune responses in unirradiated versus UV-irradiated mice. We demonstrate that UV-induced Ts and effector TDTH cells share the same epitope specificity, indicating that both cell populations arise from the same clonal progenitors. UVR also causes profound changes in the localization and proliferation of antigen-specific T cells during an immune response. Antigen-specific T cells are not detectable in the DLNs of UV-irradiated mice after 3 days post-immunization, but are found in abundance in the spleen. In contrast, these clones continue to be found in the DLNs and spleens of normal animals several days post-immunization. Our studies also reveal that a Th2 cytokine environment is essential for the generation of Ts in UV-irradiated mice. ^ The third part of our study examined the pleiotrophic nature of UV-induced Ts. We used a model for the induction of both cellular and humoral responses to human gamma-globulin (HGG) to demonstrate that UV-induced Ts lymphocytes can suppress DTH as well as antibody responses. (Abstract shortened by UMI.) ^