137 resultados para Health Sciences, Pharmacology|Chemistry, Biochemistry|Chemistry, Pharmaceutical
Resumo:
The DNA replication polymerases δ and ϵ have an inherent proofreading mechanism in the form of a 3'→5' exonuclease. Upon recognition of errant deoxynucleotide incorporation into DNA, the nascent primer terminus is partitioned to the exonuclease active site where the incorrectly paired nucleotide is excised before resumption of polymerization. The goal of this project was to identify the cellular and molecular consequences of an exonuclease deficiency. The proofreading capability of model system MEFs with EXOII mutations was abolished without altering polymerase function.^ It was hypothesized that 3'→5' exonucleases of polymerases δ and ϵ are critical for prevention of replication stress and important for sensitization to nucleoside analogs. To test this hypothesis, two aims were formulated: Determine the effect of the exonuclease active site mutation on replication related molecular signaling and identify the molecular consequences of an exonuclease deficiency when replication is challenged with nucleoside analogs.^ Via cell cycle studies it was determined that larger populations of exonuclease deficient cells are in the S-phase. There was an increase in levels of replication proteins, cell population growth and DNA synthesis capacity without alteration in cell cycle progression. These findings led to studies of proteins involved in checkpoint activation and DNA damage sensing. Finally, collective modifications at the level of DNA replication likely affect the strand integrity of DNA at the chromosomal level.^ Gemcitabine, a DNA directed nucleoside analog is a substrate of polymerases δ and ϵ and exploits replication to become incorporated into DNA. Though accumulation of gemcitabine triphosphate was similar in all cell types, incorporation into DNA and rates of DNA synthesis were increased in exonuclease defective cells and were not consistent with clonogenic survival. This led to molecular signaling investigations which demonstrated an increase in S-phase cells and activation of a DNA damage response upon gemcitabine treatment.^ Collectively, these data indicate that the loss of exonuclease results in a replication stress response that is likely required to employ other repair mechanisms to remove unexcised mismatches introduced into DNA during replication. When challenged with nucleoside analogs, this ongoing stress response coupled with repair serves as a resistance mechanism to cell death.^
Resumo:
Nucleoside analogs are a class of chemotherapeutic agents with tremendous utility in treating viral infections and cancers. Traditional nucleoside analogs are DNA-directed. However, there is a new group of nucleoside analogs that induce cell death by a direct effect on RNA synthesis. The adenosine analog, 8-chloroadenosine, is incorporated into RNA and is currently in clinical trials. Another congener, 8-amino-adenosine has demonstrated toxicity in multiple myeloma cell lines. Like other nucleoside analogs, 8-amino-adenosine must be metabolized to its triphosphate to elicit a cytotoxic effect. Furthermore, 8-amino-adenosine causes a decline of the intracellular ATP pool and inhibits mRNA poly(A) adenylation. ^ Because of the previously known adenosine analog mechanism as well as the scope of the RNA directed nucleoside analog field, I hypothesized there are multiple mechanisms of transcription inhibition mediating 8-amino-adenosine-induced cell death. Prior to investigating these mechanisms, cell death by 8-amino-adenosine was characterized. 8-Amino-adenosine activates PARP cleavage and induces the caspase cascade. 8-Amino-adenosine increases Annexin V binding and the mitochondrial membrane permeability in wild-type MEF cells. In BAX/BAK deficient MEF cells, 8-amino-adenosine decreases the mitochondrial membrane permeability and induces autophagy. ^ Once cell death was characterized, the mechanisms of 8-amino-adenosine transcription inhibition were assessed. It was established that 8-aminoadenosine treatment causes 8-amino-ATP accumulation and decreases the intracellular ATP concentration, resulting in RNA synthesis inhibition. Several other mechanisms are identified. First, a relationship between ATP decline by 8-amino-adenosine or other known ATP synthesis inhibitors and RNA synthesis is established indicating that effects on cellular bioenergy, regardless of the mechanism of ATP decline, can decrease RNA synthesis. Second, 8-aminoadenosine treatment decreases the phosphorylation of serine residues on the RNA polymerase II C-terminal domain which regulates transcription initiation and elongation. Third, evidence is provided to demonstrate 8-amino-ATP is a substrate for RNA synthesis. Fourth, 8-amino-ATP is incorporated at the 3'-terminal position leading to chain termination. Finally, in vitro transcription assays show that 8-amino-ATP may compete with ATP to decrease de novo mRNA synthesis. Overall, this work demonstrates 8-amino-adenosine is a cytotoxic nucleoside analog that functions to inhibit RNA transcription through multiple mechanisms. ^
Resumo:
One of the most critical aspects of G Protein Coupled Receptors (GPCRs) regulation is their rapid and acute desensitization following agonist stimulation. Phosphorylation of these receptors by GPCR kinases (GRK) is a major mechanism of desensitization. Considerable evidence from studies of rhodopsin kinase and GRK2 suggests there is an allosteric docking site for the receptor distinct from the GRK catalytic site. While the agonist-activated GPCR appears crucial for GRK activation, the molecular details of this interaction remain unclear. Recent studies suggested an important role for the N- and C-termini and domains in the small lobe of the kinase domain in allosteric activation; however, neither the mechanism of action of that site nor the RH domain contributions have been elucidated. To search for the allosteric site, we first indentified evolutionarily conserved sites within the RH and kinase domains presumably deterministic of protein function employing evolutionary trace (ET) methodology and crystal structures of GRK6. Focusing on a conserved cluster centered on helices 3, 9, and 10 in the RH domain, key residues of GRK5 and 6 were targeted for mutagenesis and functional assays. We found that a number of double mutations within helices 3, 9, and 10 and the N-terminus markedly reduced (50–90%) the constitutive phosphorylation of the β-2 Adrenergic Receptor (β2AR) in intact cells and phosphorylation of light-activated rhodopsin (Rho*) in vitro as compared to wild type (WT) GRK5 or 6. Based on these results, we designed peptide mimetics of GRK5 helix 9 both computationally and through chemical modifications with the goal of both confirming the importance of helix 9 and developing a useful inhibitor to disrupt the GPCR-GRK interaction. Several peptides were found to block Rho* phosphorylation by GRK5 including the native helix 9 sequence, Peptide Builder designed-peptide preserving only the key ET residues, and chemically locked helices. Most peptidomimetics showed inhibition of GRK5 activity greater than 80 % with an IC50 of ∼ 30 µM. Alanine scanning of helix 9 has further revealed both essential and non-essential residues for inhibition. Importantly, substitution of Arg 169 by an alanine in the native helix 9-based peptide gave an almost complete inhibition at 30 µM with an IC50 of ∼ 10 µM. In summary we report a previously unrecognized crucial role for the RH domain of GRK5 and 6, and the subsequent identification of a lead peptide inhibitor of protein-protein interaction with potential for specific blockade of GPCR desensitization. ^
Resumo:
Considerable evidence suggests that central cholinergic neurons participate in either acquisition, storage or retrieval of information. Experiments were designed to evaluate information processing in mice following either reversible or irreversible impairment in central cholinergic activity. The cholinergic receptor antagonists, atropine and methylatropine were used to reversibly inhibit cholinergic transmission. Irreversible impairment in central cholinergic function was achieved by central administration of the cholinergic-specific neurotoxins, N-ethyl-choline aziridinium (ECA) and N-ethyl-acetylcholine aziridinium (EACA).^ ECA and EACA appear to act by irreversible inhibition of high affinity choline uptake (proposed rate-limiting step in acetylcholine synthesis). Intraventricular administration of ECA or EACA produced persistent reduction in hippocampal choline acetyltransferase activity. Other neuronal systems and brain regions showed no evidence of toxicity.^ Mice treated with either ECA or EACA showed behavioral deficits associated with cholinergic dysfunction. Passive avoidance behavior was significantly impaired by cholinotoxin treatment. Radial arm maze performance was also significantly impaired in cholinotoxin-treated animals. Deficits in radial arm maze performance were transient, however, such that rapid and apparent complete behavioral recovery was seen during retention testing. The centrally active cholinergic receptor antagonist atropine also caused significant impairment in radial arm maze behavior, while equivalent doses of methylatropine were without effect.^ The relative effects of cholinotoxin and receptor antagonist treatment on short-term (working) memory and long-term (reference) memory in radial arm maze behavior were examined. Maze rotation studies indicated that there were at least two different response strategies which could result in accurate maze performance. One strategy involved the use of response algorithms and was considered to be a function of reference memory. Another strategy appeared to be primarily dependent on spatial working memory. However, all behavioral paradigms with multiple trails have reference memory requirements (i.e. information useful over all trials). Performance was similarly affected following either cholinotoxin or anticholinergic treatment, regardless of the response strategy utilized. In addition, rates of behavioral recovery following cholinotoxin treatment were similar between response groups. It was concluded that both cholinotoxin and anticholinergic treatment primarily resulted in impaired reference memory processes. ^
Resumo:
Arsenic trioxide (ATO) is an inorganic arsenic derivative that is very effective against relapsed acute promyelocytic leukemia. It is being investigated as therapy for other cancers, but the risk/benefit ratio is questionable due to significant side effects. In contrast, organic arsenic derivatives (OAD) are known to be much less toxic than ATO. Based on high activity, we selected GMZ27 (dipropil-s-glycerol arsenic) for further study and have confirmed its potent activity against human acute leukemia cell lines. This anti-leukemic activity is significantly higher than that of ATO. Both in vivo and in vitro tests have shown that GMZ27 is significantly less toxic to normal bone marrow mononuclear cells and normal mice. Therefore, further study of the biological activity of GMZ27 was undertaken. ^ GMZ27, in contrast to ATO, can only marginally induce maturation of leukemic cells. GMZ27 has no effect on cell cycle. The anti-leukemic activity of GMZ27 against acute myeolocytic leukemia cells is not dependent upon degradation of PML-RARα fusion protein. GMZ27 causes dissipation of mitochondrial transmembrane potential, cleavage of caspase 9, caspase 3 activation. Further studies indicated that GMZ27 induces intracellular reactive oxygen species (ROS) production, and modification of intracellular ROS levels had profound effect on its potential to inhibit proliferation of leukemic cells. Therefore ROS production plays a major role in the anti-leukemic activity of GMZ27. ^ To identify how GMZ27 induces ROS, our studies focused on mitochondria and NADPH oxidase. The results indicated that the source of ROS generation induced by GMZ27 is dose dependent. At the low dose (0.3 uM) GMZ27 induces NADPH oxidase activity that leads to late ROS production, while at the high dose (2.0 uM) mitochondria function is disrupted and early ROS production is induced leading to dramatic cell apoptosis. Therefore, late, ROS production can be detected in mitochondria are depleted Rho-0 cells. Our work not only delineates a major biologic pathway for the anti-leukemic activity of GMZ27, but also discusses possible ways of enhancing the effect by the co-application of NADPH oxidase activator. Further study of this interaction may lead to achieving better therapeutic index.^
Resumo:
Asbestos and silica are important industrial hazards. Exposure to these dusts can result in pulmonary fibrosis and, in the case of asbestos, cancer. Although the hazards of asbestos and silica exposure have long been known, the pathogenesis of dust-related disease is not well understood. Both silica and asbestos are thought to alter the function of the alveolar macrophage, but the nature of the biochemical alteration is unknown. Therefore, this study examined the effect of asbestos and silica on the activation pathway of the guinea pig alveolar macrophage. Activation of macrophages by physiological agents results in stimulation of phospholipase C causing phosphatidyl inositol turnover and intracellular calcium mobilization. Phosphatidyl inositol turnover produces diacylglycerol which activates protein kinase C causing superoxide anion production.^ Chrysotile stimulated alveolar macrophages to produce superoxide anion. This stimulation proceeded via phospholipase C, since chrysotile stimulated phosphatidyl inositol turnover and intracellular calcium mobilization. The possible involvement of a coupling protein was evaluated by pretreating cells with pertussis toxin. Pertussis toxin pretreatment partially inhibited chrysotile stimulation, suggesting that chrysotile activates a coupling protein in an non-classical manner. Potential binding sites for chrysotile stimulation were examined using a series of nine lectins. Chrysotile-stimulated superoxide anion production was blocked by pretreatment with lectins which bound to N-acetylglucosamine, but not by lectins which bound to mannose, fucose, or N-acetylgalactosamine. In addition, incubation with the N-acetylglucosamine polymer, chitin, inhibited chrysotile-stimulated superoxide anion production, suggesting that chrysotile stimulated superoxide anion production by binding to N-acetylglucosamine residues.^ On the other hand, silica did not stimulate superoxide anion production. The effect of silica on agonist stimulation of this pathway was examined using two stimulants of superoxide anion production, N-formyl-nle-leu-phe (FNLP, which stimulates through phospholipase C) and phorbol-12,13-dibutyrate (which directly activates protein kinase C). Sublethal doses of silica inhibited FNLP-stimulated superoxide anion production, but did not affect phorbol-12,13-dibutyrate-stimulated superoxide anion production, suggesting that the site of inhibition precedes protein kinase C. This inhibition was not due to cell membrane damage, since cell permeability to calcium-45 and rubidium-86 was not increased. It is concluded that chrysotile binds to N-acetylglucosamine residues on macrophage surface glycoproteins to stimulate the physiological pathway resulting in superoxide anion production. In contrast, silica does not stimulate superoxide anion production, but it did inhibit FNLP-stimulated superoxide anion production. ^
Resumo:
This study evaluated the administration-time-dependent effects of a stimulant (Dexedrine 5-mg), a sleep-inducer (Halcion 0.25-mg) and placebo (control) on human performance. The investigation was conducted on 12 diurnally active (0700-2300) male adults (23-38 yrs) using a double-blind, randomized sixway-crossover three-treatment, two-timepoint (0830 vs 2030) design. Performance tests were conducted hourly during sleepless 13-hour studies using a computer generated, controlled and scored multi-task cognitive performance assessment battery (PAB) developed at the Walter Reed Army Institute of Research. Specific tests were Simple and Choice Reaction Time, Serial Addition/Subtraction, Spatial Orientation, Logical Reasoning, Time Estimation, Response Timing and the Stanford Sleepiness Scale. The major index of performance was "Throughput", a combined measure of speed and accuracy.^ For the Placebo condition, Single and Group Cosinor Analysis documented circadian rhythms in cognitive performance for the majority of tests, both for individuals and for the group. Performance was best around 1830-2030 and most variable around 0530-0700 when sleepiness was greatest (0300).^ Morning Dexedrine dosing marginally enhanced performance an average of 3% with reference to the corresponding in time control level. Dexedrine AM also increased alertness by 10% over the AM control. Dexedrine PM failed to improve performance with reference to the corresponding PM control baseline. With regard to AM and PM Dexedrine administrations, AM performance was 6% better with subjects 25% more alert.^ Morning Halcion administration caused a 7% performance decrement and 16% increase in sleepiness and a 13% decrement and 10% increase in sleepiness when administered in the evening compared to corresponding in time control data. Performance was 9% worse and sleepiness 24% greater after evening versus morning Halcion administration.^ These results suggest that for evening Halcion dosing, the overnight sleep deprivation occurring in coincidence with the nadir in performance due to circadian rhythmicity together with the CNS depressant effects combine to produce performance degradation. For Dexedrine, morning administration resulted in only marginal performance enhancement; Dexedrine in the evening was less effective, suggesting the 5-mg dose level may be too low to counteract the partial sleep deprivation and nocturnal nadir in performance. ^
Resumo:
This study has evaluated the utility of measuring effects of low level occupational exposure of nursing personnel to antineoplastic agents. The effect measured in this study is chromosomal damage in peripheral lymphocytes (chromosomal breakage and micronuclei frequency).^ Using nursing personnel in three exposure classifications (low, moderate and high) and breast cancer patients before and after treatment with antineoplastic agents, a weak but statistically significant association was found between exposure and chromosomal damage. Of special interest was the finding that consistent glove usage was negatively associated with increased chromosomal damage.^ The study also demonstrated a statistically significant association between the two measures of chromosomal damage: chromosomal breakage and micronuclei frequency. This suggests that the micronucleus method is a useful test for studying cytogenetic effects in lymphocytes. ^
Resumo:
Hydrazine $\rm (N\sb2H\sb4),$ an important liquid propellant and derivative chemical for pharmaceuticals and pesticides, produces coma and convulsions sometimes resulting in death. Hyperammonia was found in rabbits exposed to 18 mg/Kg of hydrazine. Results of Part One of this study of rabbits emphasize the importance of acute ammonia toxicity during the first three hours following exposure to hydrazine. At no time during this post exposure period did a significant reduction of hydrazine to ammonia occur. Therefore, the elevated blood ammonia was apparently secondary to the effects of hydrazine on metabolic pathways. Further, the results support the theory of competitive inhibition of ammonia by hydrazine and emphasize the need to monitor plasma ammonia following toxic exposure to hydrazine.^ In Part Two, urea, ammonia, CO$\sb2,$ pH, glucose, sodium, potassium, chloride and creatinine were measured for up to 4 hours following injection of 18 mg/Kg of hydrazine in each of two groups of five rabbits. One group received normal saline and the other group received 5% dextrose and water/normal saline. Hyperammonemia, minimal metabolic acidosis and hyperglycemia without increased urea were found in the rabbits receiving normal saline intravenous infusion and hydrazine injection. Hence, hypoglycemia does not appear to play a role in the development of hyperammonemia. A significant difference in the elevated ammonia levels between the two groups receiving dextrose and water/normal saline and normal saline at 1 hour occurred. There was no significant difference in the elevated ammonia levels seen between the two groups receiving dextrose and water/normal saline and normal saline at 2.5 and 4 hours. Thus at 1 hour the group receiving dextrose was able to utilize excess glucose to detoxify ammonia, while at 2.5 and 4 hours there was no significant difference in the two groups' ability to detoxify ammonia.^ Findings support the theory that hydrazine inhibits the formation of urea resulting in hyperammonemia. Results suggest that hydrazine at 18 mg/Kg, a known hypoglycemic agent, causes serious hyperammonemia without increasing urea production during hyperglycemia. These experiments support a unified theory for the toxic mechanism of action of hydrazine, i.e., the intermediary metabolic effects of hydrazine are brought about by the formation of hydrazones which encumber ATP synthesis and vitamin B$\sb6$ enzymatic reactions. ^
Resumo:
Urines from patients administered mutagenic antineoplastic drugs were significantly mutagenic in the Ames assay, and hence may pose a genotoxic hazard to hospital personnel or family members caring for the patient. The urines were tested for mutagenicity in several different strains of Salmonella typhimurium that were uvr positive or negative (TA98, TA100, TA102, UTH8413, UTH8414). The urines were fractionated by high pressure liquid chromatography (HPLC) and the fractions assayed for mutagenicity in the strains in which the whole urine was mutagenic. Only fractions of urines containing the parent compound (cisplatin, doxorubicin, or mitomycin) were mutagenic; no other fraction showed significant mutagenicity. However, urine containing cyclophosphamide had two fractions that were mutagenic. One fraction, the fraction containing cyclophosphamide, required metabolic activation for mutagenicity. The other fraction did not require activation for mutagenicity.^ The chemical and mutagenic stability of these urines at room temperature was assayed over a 14 day period. The parent compound degraded within the first seven days, but the urines remained mutagenic. Cis-platinum was chemically stable in the urine; however, the urine decreased in mutagenicity. The decrease was probably the result of stable ligands binding to the platinum.^ Inactivation methods were developed to reduce the genotoxic hazard. Urine containing cisplatin was inactivated by complexing the cisplatin with diethyldithiocarbamate (DDTC). Oxidation with NaOCl of urines containing mitomycin and doxorubicin (sodium thiosulfate must be added to the doxorubicin urine) results in mutagenic inactivation. Inactivation of urine containing cyclophosphamide requires oxidation with alkaline potassium permaganate and trapping of active degradation products with sodium thiosulfate. Urines containing these drugs can be inactivated, but not always by the same method that inactivates the drug alone in solution. Therefore, in the future development of inactivation methods, both chemical and mutagenic assays are necessary to determine effectiveness. Methods of inactivation of mutagenic excreta developed in this study are both effective and practical. ^
Resumo:
Benzene was studied in its target organ of effect, the bone marrow, with the micronucleus test and metaphase chromosomal analysis. Groups of 5 or 10, male and female CD-1 mice were treated with one or two p.o. or i.p. doses of benzene (440 mg/kg) or toluene (430, 860 or 1720 mg/kg) or both, and sacrificed 30 or 54h after the first dose. Benzene-treated animals were pretreated with phenobarbital (PB), 3-methylcholanthrene (3MC), (beta)-naphthoflavone ((beta)NF), SKF-525A, or Aroclor 1254. Toluene showed no clastogenic activity and reduced the clastogenic effect of co-administered benzene. None of the pretreatments protected against benzene clastogenicity. 3MC and (beta)NF greatly promoted benzene myeloclastogenicity. Dose response curves for benzene myeloclastogenicity were much steeper with 3MC induction than without. Micronuclei (MN) were 4-6 times higher by p.o. than i.p. benzene administration. This was not due to bacterial flora since no difference was found between germ-free and conventional males gavaged with benzene. A sensitive high-pressure liquid chromatographic method was developed and used to explore the relation between metabolic profiles of benzene in urine and MN after various pretreatments. Phenol (PH), trans-trans-muconic acid (MA) and hydroquinone (HQ) in the 48h male mouse urine accounted, respectively, for 12.8-22.8, 1.8-4.7 and 1.5-3.7% of the single oral dose of benzene (880, 440 and 220 mg/kg). Catechol (CT) was seen in trace amounts. MA was identified by ultraviolet and infrared spectroscopy and elemental analysis. Urinary metabolites--especially MA, HQ, and phenol glucuronide--correlated well with MN and were dependent on both the dose and the metabolism of benzene. Benzene metabolism was most inducible by cytochrome P-448 enzyme inducers, by p.o. > i.p., in males > females, and inhibited by toluene. Ph, CT or HQ administered p.o., 250, 150 and 250 mg/kg, respectively, or at 150 mg/kg x 2 after 3MC pretreatment, failed to reproduce the potent myeloclastogenicity of benzene. In fact, only HQ was mildly clastogenic. ^
Resumo:
Pregnant Sprague-Dawley rats were gavaged with vehicle (olive oil) or 37.5, 75, 150 or 300 mg/kg of (DELTA)('9)-Tetrahydrocannabinol (THC) on days 18 or 19 of gestation. Male offspring as well as a group of hypophysectomized rats (positive control) were sacrificed at 35 days of age, while females and hypophysectomized control were sacrificed at 36 days of age. The sex-differences in ethylmorphine-N-demethylase and aniline hydroxylase liver activities were evaluated.^ Ethylmorphine-N-demethylase activity showed a significant difference between males and females from control and 37.5, 75 and 150 mg/kg THC dosed groups. Female offspring exposed prenatally to 300 mg/kg THC had a significant increase (p < .01) in N-demethylation activity, while their male counterparts had similar enzyme activity to those found in the male groups from control and 37.5 to 150 mg/kg THC dosed. Moreover, the percent increase in the 300 mg/kg THC dosed females was similar to that detected in the hypophysectomized female rats (positive control). As expected no sex difference in aniline hydroxylase activity was detected in control as well as exposed groups, including the 300 mg/kg THC dosed group.^ It is concluded that (DELTA)('9)-Tetrahydrocannabinol administered once by gavage in days 18 or 19 of gestation alters the liver Mixed Function Oxidase (MFO) sexual dimorphism imprinting process of the rat. ^
Resumo:
The effect of time (i.e., biologic time structure) of drug administration on the bioavailability of theophylline was investigated in man after both a single dosage as well as after repeated, or chronic, drug administrations. Preliminary laboratory investigations on Balb-C mice showed the toxic
Resumo:
Purpose: To explore the natural trajectory of circadian rhythms of sedation requirement, core body temperature (CBT), pulmonary mechanics (PM), and gas exchange (GE) in mechanically ventilated swine, as these variables affect the duration of mechanical ventilation. ^ Design: A secondary analysis to describe and compare circadian rhythms of study variables in swine mechanically ventilated for ≤ 7 days. ^ Setting: Porcine Intensive Care Unit (ICU).^ Sample: Six male swine. ^ Methods: Sedation requirements were recorded hourly and the CBT, PM and GE variables were sampled every 1 s – 1 min for ≤ 7 days. The data sets for each pig with > 5 days ICU length of stay were divided into one section representing the first 3 days and one section representing subsequent days. The Lomb periodogram was used to estimate the circadian time period for each variable, and cosinor analysis with the estimated time period to obtain amplitude and mesor. Circadian to ultradian bandpower ratio to assess rhythm quality and stability over time and goodness-of-fit index to describe biological significance of a rhythm were used. Together, these two parameters were used to define rhythm robustness over time. The masking effect of sedation as a potential confounder of the circadian rhythms of CBT, PM, and GE was explored, and circadian rhythm profiles of CBT of pigs in the ICU setting were compared with those of the same pigs in the ambulatory setting. ^ Results: All pigs had significant rhythms in CBT, respiratory rate, and peripheral oxygen saturation across ICU data sets. Healthier pigs had more robust rhythms of study variables over time. Sedation did not appear to mask the circadian rhythms of CBT, PM, and GE. The circadian rhythm of CBT was less robust in the ICU setting than in the ambulatory setting. ^ Conclusions: Individual subject observations provided preliminary evidence that robustness of rhythms varies with subject acuity. Comparison of profiles of circadian rhythms among ICU subjects with similar acuity and disease processes is warranted to determine if the profiles in the present study are reproducible. Identification of consistent patterns may provide insight into subject morbidity and timing of such therapeutic interventions as weaning from mechanical ventilation. ^
Resumo:
Mechanisms of multidrug resistance (MDR) were studied in two independent MDR sublines (AdR1.2 and SRA1.2) derived from the established human colon carcinoma cell line LoVo. AdR1.2 was developed by long-term continuous exposure of the cells to adriamycin (AdR) in stepwise increments of concentration, while SRA1.2 was selected by repetitive pulse treatments with AdR at a single concentration. In this dissertation, the hypothesis that the mechanism of drug resistance in SRA1.2 is different than that in AdR1.2 is tested. While SRA1.2 demonstrated similar biological characteristics when compared to the parental LoVo, AdR1.2 exhibited remarkable alterations in biological properties. The resistance phenotype of AdR1.2 was reversible when the cells were grown in the drug-free medium whereas SRA1.2 maintained its resistance for at least 10 months under similar conditions. Km and Vmax of carrier-mediated facilitated diffusion AdR transport were similar among the three lines. However, both resistant sublines exhibited an energy-dependent drug efflux. AdR1.2 appeared to possess an activated efflux pump, and a decreased nucleus-binding of AdR, whereas SRA1.2 showed merely a lower affinity in binding of AdR to the nuclei. Southern blot analysis showed no amplification of the MDR1 gene in either of the two resistant subclones. However, Western blot analysis using the C219 monoclonal antibody against P170 glycoprotein detected a Mr 150-kDa plasma protein (P150) in AdR1.2 but not in SRA1.2 or in the parental LoVo. In vitro phosphorylation studies revealed that P150 was a phosphoprotein; its phosphorylation was Mg$\sp{2+}$-dependent and could be enhanced by verapamil, an agent capable of increasing intracellular AdR accumulation in AdR1.2 cells. The phosphorylation studies also revealed elevated phosphorylation of a Mr 66-kDa plasma membrane protein that was detectable in the AdR1.2 revertant and in AdR1.2 when verapamil was present, suggesting that hyperphosphorylation of the Mr 66-kDa protein may be related to the reversal of MDR. SDS-PAGE of the plasma membrane protein demonstrated overproduction of a Mr 130-kDa, MDR-related protein in both the resistant sublines. The Mr 130-kDa, MDR-related protein in both the resistant sublines. The Mr 130-kDa protein was not immunoreactive with C219, but its absence in the AdR1.2 revertant and the parental LoVo suggests that it is an MDR-related plasma membrane protein. In conclusion, the results from this study support the author's hypothesis that the mechanisms responsible for "Acquired" and "Natural" MDR are not identical. ^