483 resultados para Biology, Molecular|Biology, Genetics|Health Sciences, Ophthalmology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ornithine decarboxylase (ODC), the initial inducible enzyme in the polyamine biosynthetic pathway, exists in the transformed macrophage RAW264 cell line as a phosphoprotein following cell stimulation. The hypothesis that ODC is phosphorylated at multiple sites in stimulated RAW264 cells was investigated. ODC isolated from tetradecanoyl-phorbol-13-acetate (TPA)-stimulated cells metabolically radiolabeled in the presence of $\sp{32}$P$\sb{\rm i}$ was subjected to cyanogen bromide (CNBr) cleavage followed by phosphopeptide mapping and two dimensional phosphoamino acid analysis. These phosphorylation studies demonstrated six in situ phosphorylated CNBr-generated fragments having apparent molecular weights of 17, 14.3, 8, 6.5, 4, and 2.7 kDa and also revealed that ODC is phosphorylated in RAW264 cells on at least 5 serine and 2 threonine residues.^ In addition, the in vivo specific activity and phosphorylation pattern of ODC in response to various kinase cascade stimulants was studied. A differential response in ODC specific activity and a variation in the relative distribution of $\sp{32}$P-labeling of serine and threonine residues on the ODC molecule was noted in response to fetal bovine serum, cAMP and isobutylmethylxanthine, lipopolysaccharide, or TPA.^ Based on information derived from consensus sequence motifs, three protein kinases responsible for the phosphorylation of ODC in vitro were identified. Purified ODC was phosphorylated in vitro by casein kinase II (CK II), extracellular signal-regulated kinase 1 (ERK1), and its activator, extracellular signal-regulated kinase kinase (MEK). CK II phosphorylated ODC on serine residues contained on three CNBr-generated peptides with apparent molecular weights of 14.3, 6.5, and 2.7 kDa. Both ERK1 and MEK phosphorylated ODC on serine and threonine residues on a CNBr-generated peptide fragment with an apparent molecular weight of 6.5 kDa. The in vitro radiolabeled peptides corresponded in molecular mass with some of the CNBr fragments of ODC phosphorylated in situ in stimulated RAW264 cells.^ This study concludes that ODC is phosphorylated in the transformed macrophage RAW264 cell line at multiple sites in response to various kinase cascade stimulants. These stimulants also led to a differential response in specific activity and phosphorylation pattern of ODC in RAW264 cells. Three protein kinases have been identified which phosphorylate ODC in vitro on peptides and amino acid residues which correspond with those phosphorylated in situ. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of these studies was to investigate the role of nitric oxide (NO) in tumor metastasis. K-1735 Metastatic cells survived in blood circulation to produce experimental lung metastases, whereas nonmetastatic cells did not. After incubation with combination cytokines or lipopolysaccharide (LPS), nonmetastatic cells exhibited high levels of inducible nitric oxide synthase (iNOS) activity and NO production, whereas metastatic cells did not. The production of NO directly correlated with cytotoxic effects of cytokines or LPS. To provide direct evidence for the inverse correlation between the production of endogenous NO and the ability of K-1735 cells to survive in syngeneic mice to produce lung metastases, highly metastatic K-1735 clone 4 cells (C4.P), which express low levels of iNOS, were transfected with a functional iNOS (C4.L8), inactive-mutated iNOS (C4.S2), or neomycin-resistance (C4.Neo) genes in medium containing 3 mM NMA. C4.P, C4.Neo.3, and C4.S2.3 cells were highly metastatic whereas C4.L8.5 cells were not metastatic. The C4.L8.5 cells produced slow growing subcutaneous tumors in nude mice, whereas the other three lines produced fast growing tumors. In vitro studies indicated that the expression of iNOS in C4.L8.5 cells induced apoptosis. Collectively, these data demonstrate that the expression of recombinant iNOS in melanoma cells is associated with apoptosis, suppression of tumorigenicity, and abrogation of metastasis.^ Furthermore, multiple systemic administrations of multilamellar vesicle-liposomes (MLV) containing the lipopeptide CGP 31362 (MLV-31362) or MLV-31362 combined with murine interferon-gamma (IFN-$\gamma$) eradicated the metastases by M5076 reticular cell sarcoma. Tumor regression correlated with iNOS expression within the tumor lesions and with increased NO production. The administration of NMA significantly decreased NO production and diminished the antitumor activities. These data imply that the activation of iNOS can serve as a target for immunotherapeutic agents for treatment of murine reticulum cell sarcoma metastases. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF)-induced apoptosis is important in immunologic cytotoxicity, autoimmunity, sepsis, normal embryonic development, and wound healing. TNF exerts cytotoxicity on many types of tumor cells but not on normal cells. The molecular events leading to cell death triggered by TNF are still poorly understood. We found that enforced expression of an activated H-ras oncogene converted the non-tumorigenic TNF-resistant C3H 10T1/2 fibroblasts into tumorigenic cells (10TEJ) that also became very sensitive to TNF-induced apoptosis. This finding suggested that the oncogenic form of H-Ras, in which the p21 is locked in the GTP-bound form, could play a role in TNF-induced apoptosis of these cells. To investigate whether Ras activation is an obligatory step in TNF-induced apoptosis, we introduced two different molecular antagonists of Ras, namely the Rap1A tumor suppressor gene or the dominant-negative rasN17 gene, into H-ras transformed 10TEJ cells. Expression of either Rap1A or RasN17 in 10TEJ cells resulted in abrogation of TNF-induced apoptosis. Similar results were obtained by expression of either Ras antagonist in L929 cells, a fibroblast cell line that is sensitive to TNF-induced apoptosis but does not have a ras mutation. The effects of Rap-1A and RasN17 appear to be specific to TNF, since cytotoxicity induced by doxorubicin and thapsigargin are unaffected. Additionally, constitutive apoptosis sensitivity in isolated nuclei, as measured by activation of Ca$\sp{2+}$-dependent endogenous endonuclease, is not affected by Rap-1A or RasN17. Moreover, TNF treatment of L929 cells increased Ras-bound GTP, indicating that Ras activation is triggered by TNF. Thus, Ras activation is required for TNF-induced apoptosis in mouse cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies have shown cadmium to induce cancer in humans, while experimental studies have proven this metal to be a potent tumor inducer in animals. However, cadmium appears nonmutagenic in most prokaryotic and eukaryotic mutagenesis assays. In this study, we present the identification of mutations in normal rat kidney cells infected with the mutant MuSVts110 retrovirus (6m2 cells) as a result of treatment with cadmium chloride. The detection of these mutations was facilitated by the use of a novel mutagenesis assay established in this laboratory. The 6m2 reversion assay is a positive selection system based on the conditional expression of the MuSVts110 v-mos gene. In MuSVts110 the gag and mos genes are fused out of frame, thus the translation of the v-mos sequence requires a frameshift in the genomic RNA. In 6m2 cells this frameshift is accomplished by the temperature-dependent splicing of the primary MuSVts110 transcript. Splicing of MuSVts110, which is mediated by cis-acting sequences, occurs when 6m2 cells are grown at 33$\sp\circ$C and below, but not at 39$\sp\circ$C. Therefore, 6m2 cells appear transformed at low growth temperatures, but take on a morphologically normal appearance when grown at high temperatures. The treatment of 6m2 cells with cadmium chloride resulted in the outgrowth of a number of cells that reverted to the transformed state at high growth temperatures. Analysis of the viral proteins expressed in these cadmium-induced 6m2 revertants suggested that they contained mutations in their MuSVts110 DNA. Sequencing of the viral DNA from three revertants that constitutively expressed the P85$\sp{gag{-}mos}$ transforming protein revealed five different mutations. The Cd-B2 revertant contained three of those mutations: an A-to-G transition 48 bases downstream of the MuSVts110 3$\sp\prime$ splice site, plus a G-to-T and an A-to-T transversion 84 and 100 bases downstream of the 5$\sp\prime$ splice site, respectively. The Cd-15-5 revertant also contained a point mutation, a T-to-C transition 46 bases downstream of the 5$\sp\prime$ splice site, while Cd-10-5 contained a three base deletion of MuSVts110 11 bases upstream of the 3$\sp\prime$ splice site. A fourth revertant, Cd-10, expressed a P100$\sp{gag{-}mos}$ transforming protein, and was found to have a two base deletion. This deletion accomplished the frameshift necessary for v-mos expression, but did not alter MuSVts110 RNA splicing and the expression of p85$\sp{gag{-}mos}.$ Lastly, sequencing of the MuSVts110 DNA from three spontaneous revertants revealed the same G to T transversion in each one. This was the same mutation that was found in the Cd-B2 revertant. These findings provide the first example of mutations resulting from exposure to cadmium and suggest, by the difference in each mutation, the complexity of the mechanism utilized by cadmium to induce DNA damage. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature sensitive (ts) mutant viruses have helped elucidate replication processes in many viral systems. Several panels of replication-defective ts mutants in which viral RNA synthesis is abolished at the nonpermissive temperature (RNA$\sp{-})$ have been isolated for Mouse Hepatitis Virus, MHV (Robb et al., 1979; Koolen et al., 1983; Martin et al., 1988; Schaad et al., 1990). However, no one had investigated genetic or phenotypic relationships between these different mutant panels. In order to determine how the panel of MHV-JHM RNA$\sp{-}$ ts mutants (Robb et al., 1979) were genetically related to other described MHV RNA$\sp{-}$ ts mutants, the MHV-JHM mutants were tested for complementation with representatives from two different sets of MHV-A59 ts mutants (Koolen et al., 1983; Schaad et al., 1990). The three ts mutant panels together were found to comprise eight genetically distinct complementation groups. Of these eight complementation groups, three complementation classes are unique to their particular mutant panel; genetically equivalent mutants were not observed within the other two mutant panels. Two complementation groups were common to all three mutant panels. The three remaining complementation groups overlapped two of the three mutant sets. Mutants MHV-JHM tsA204 and MHV-A59 ts261 were shown to be within one of these overlapping complementation groups. The phenotype of the MHV-JHM mutants within this complementation class has been previously characterized (Leibowitz et al., 1982; Leibowitz et al, 1990). When these mutants were grown at the permissive temperature, then shifted up to the nonpermissive temperature at the start of RNA synthesis, genome-length RNA and leader RNA fragments accumulated, but no subgenomic mRNA was synthesized. MHV-A59 ts261 produced leader RNA fragments identical to those observed with MHV-JHM tsA204. Thus, these two MHV RNA$\sp{-}$ ts mutants that were genetically equivalent by complementation testing were phenotypically similar as well. Recombination frequencies obtained from crosses of MHV-A59 ts261 with several of the gene 1 MHV-A59 mutants indicated that the causal mutation(s) of MHV-A59 ts261 was located near the overlapping junction of ORF1a and ORF1b, in the 3$\sp\prime$ end of ORF1a, or the 5$\sp\prime$ end of ORF1b. Sequence analysis of this junction and 1400 nucleotides into the 5$\sp\prime$ end of ORF1b of MHV-A59 ts261 revealed one nucleotide change from the wildtype MHV-A59. This substitution at nucleotide 13,598 (A to G) was a silent mutation in the ORF1a reading frame, but resulted in an amino acid change in ORF1b gene product (I to V). This amino acid change would be expressed only in the readthrough translation product produced upon successful ribosome frameshifting. A revertant of MHV-A59 ts261 (R2) also retained this guanidine residue, but had a second substitution at nucleotide 14,475 in ORF1b. This mutation results in the substitution of valine for an isoleucine.^ The data presented here suggest that the mutation in MHV-A59 ts261 (nucleotide 13,598) would be responsible for the MHV-JHM complementation group A phenotype. A second-site reversion at nucleotide 14,475 may correct this defect in the revertant. Sequencing of gene 1 immediately upstream of nucleotide 13,296 and downstream of nucleotide 15,010 must be conducted to test this hypothesis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of hematopoietic precursor cell with bone marrow stromal cells is assumed to be important to the survival of hematopoietic precursor cells during hematopoietic cell long-term culture. Early hematopoietic stem cells are preferentially found within the stromal adherent cell fraction in primary long-term bone marrow cultures. The purpose of this dissertation was to understand the molecular mechanisms that govern these interactions for the regulation of survival and proliferation of early versus late hematopoietic cells.^ Monoclonal antibodies to the VLA-4 recognize the alpha4 beta1 integrin receptor on human hematopoietic cells. This monoclonal antibody blocks the adhesion between early hematopoietic progenitor cells (CD34 selected cells) and stromal cells when added to cultures of these cells. Addition of the VLA-4 monoclonal antibody to cultures of stromal cells and CD34 selected cells was shown to induce apoptosis of CD34 selected cells in these CD34 selected cell/stromal cell cocultures, as measured by the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end-labeling method. In contrast to these experiments with early hematopoietic progenitor cells (CD34+), the level of adhesion between more differentiated cells (unfractionated hematopoietic cells) and stromal cells was not significantly altered by addition of the anti-VLA-4 monoclonal antibody. Similarly, the level of apoptosis of unfractionated hematopoietic cells was not significantly increased by the addition of anti-VLA-4 monoclonal antibody to cultures of the latter cells with stromal cells. The binding of the unfractionated cells is less than that of the CD34 selected. Since there is no difference between the alpha4 beta1 integrin expression level of the early and late myeloid cells, there may be a difference in the functional state of the integrin between the early and late myeloid cells. We also show that CD34+ selected precursor cells proliferate at a higher rate when these cells are plated on recombinant VCAM-1 molecules. These data indicate that the alpha4beta1 integrin receptor (VLA-4) plays a central role in the apoptosis rescue function which results from the anchorage-dependent growth of the CD34 selected early hematopoietic cells on stromal cells. The data suggest that these apoptosis rescue pathways have less significance as the cells mature and become anchorage-independent in their growth. These data should assist in the design of systems for the ex vivo proliferation and transduction of early hematopoietic cells for genetic therapy. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metastasis is the complex process of tumor cell spread which is responsible for the majority of cancer-related deaths. Metastasis necessitates complex phenotypic changes, many of which are mediated by changes in the activities of cell surface molecules. One of these is cell surface $\beta$1,4-galactosyltransferase (GalTase), which is elevated on more highly metastatic cells. In this study, both molecular and biochemical methods were used to perturb and manipulate cell surface GalTase levels on K1735 murine melanoma cell lines in order to examine its function in metastasis.^ As expected, highly metastatic K1735 variants have higher cell surface GalTase than poorly metastatic variants. Stably transfected K1735 cell lines that overexpress surface GalTase were created. These cell lines were assayed for metastatic ability using an invasion chamber with Matrigel-coated filter inserts. Cells with increased surface GalTase were uniformly more invasive than neo transfected controls. With multiple cell lines, there was a direct correlation (r = 0.918) between surface GalTase activity and invasiveness. Homologous recombination was used to create K1735 cells with decreased levels of surface GalTase. These cells were uniformly less invasive than controls. Cell surface GalTase was inhibited using two different biochemical strategies. In both cases, inhibition of surface GalTase led to a decrease in in vivo metastatic ability of K1735 cells. This is the first direct experimental evidence addressing GalTase function in metastasis. These data provide several lines of independent evidence which show that cell surface GalTase facilitates invasion and metastasis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bcr-Abl fusion oncogene which resulted from a balanced reciprocal translocation between chromosome 9 and 22, t(9;22)(q11, q34), encodes a 210 KD elevated tyrosine specific protein kinase that is found in more than 95 percent of chronic myelogenous leukemia patients (CML). Increase of level of phosphorylation of tyrosine is observed on cell cycle regulatory proteins in cells overexpressing the Bcr-Abl oncogene, which activates multiple signaling pathways. In addition, distinct signals are required for transforming susceptible fibroblast and hematopoietic cells, and the minimal signals essential for transforming hematopoietic cells are yet to be defined. In the present study, we first established a tetracycline repressible p210$\rm\sp{bcr-abl}$ expression system in a murine myeloid cell line 32D c13, which depends on IL3 to grow in the presence of tetracycline and proliferate independent of IL3 in the absence of tetracycline. Interestingly, one of these sublines does not form tumors in athymic nude mice suggesting that these cells may not be completely transformed. These cells also exhibit a dose-dependent growth and expression of p210$\rm\sp{bcr-abl}$ at varying concentrations of tetracycline in the culture. However, p210$\rm\sp{bcr-abl}$ rescues IL3 deprivation induced apoptosis in a non-dose dependent fashion. DNA genotoxic damage induced by gamma-irradiation activates c-Abl tyrosine kinase, the cellular homologue of p210$\rm\sp{bcr-abl},$ and leads to activation of p38 MAP kinase in the cells. However, in the presence of p210$\rm\sp{bcr-abl}$ the irradiation failed to activate the p38 MAP kinase as examined by an antibody against phosphorylated p38 MAP kinase. Similarly, an altered tyrosine phosphorylation of the JAK1-STAT1 pathways was identified in cells constitutively overexpressing p210$\rm\sp{bcr-abl}.$ This may provided a molecular mechanism for altered therapeutic response of CML patients to IFN-$\alpha.$^ Bcr-Abl oncoprotein has multiple functional domains which have been identified by the work of others. The Bcr tetramerization domain, which may function to stabilize the association of the Bcr-Abl with actin filaments in p210$\rm\sp{bcr-abl}$ susceptible cells, are essential for transforming both fibroblast and hematopoietic cells. We designed a transcription unit encoding first 160 amino acids polypeptide of Bcr protein to test if this polypeptide can inhibit the transforming activity of the p210$\rm\sp{bcr-abl}$ oncoprotein in the 32D c13 cells. When this vector was transfected transiently along with the p210$\rm\sp{bcr-abl}$ expression vector, it can block the transforming activity of p210$\rm\sp{bcr-abl}.$ On the other hand, the retinoblastoma tumor suppressor protein (Rb), a naturally occurring negative regulator of the c-Abl kinase, the cellular homologue of Bcr-Abl oncoprotein, binds to and inhibits the c-Abl kinase in a cell cycle dependent manner. A polypeptide obtained from the carboxyl terminal end of the retinoblastoma tumor suppressor protein, in which the nuclear localization signal was mutated, was used to inhibit the kinase activity of the p210$\rm\sp{bcr-abl}$ in the cytoplasm. This polypeptide, called Rb MC-box, and its wild type form, Rb C-box, when overexpressed in the 32D cells are mainly localized in the cytoplasm. Cotransfection of a plasmid transcription unit coding for this polypeptide and the gene for the p210$\rm\sp{bcr-abl}$ resulted in reduced plating efficiency of p210$\rm\sp{bcr-abl}$ transfected IL3 independent 32D cells. Together, these results may lead to a molecular approach to therapy of CML and an in vitro assay system to identify new targets to which an inhibitory polypeptide transcription unit may be directed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two approaches were utilized to investigate the role of pp60c-src activation in growth control of model colon tumor cell lines. The first approach involved analysis of pp60c-src activity in response to growth factor treatment to determine if transient activation of the protein was associated with ligand induced mitogenic signal transduction as occurs in non-colonic cell types. Activation of pp60c-src was detected using colon tumor cell lysates after treatment with platelet derived growth factor (PDGF). Activation of pp60c-src was also detected in response to epidermal growth factor (EGF) treatment using cellular lysates and intact cells. In contrast, down-regulation of purified pp60c-src occurred after incubation with EGF-treated EGFr immune complexes in vitro suggesting additional cellular events were potentially required for the stimulatory response observed in intact cells. The results demonstrated activation of pp60c-src in colon tumor cells in response to PDGF and EGF which is consistent with the role of the protein in mitogenic signal transduction in non-colonic cell types.^ The second approach used to study the role of pp60c-src activation in colonic cell growth control focused on analysis of the role of constitutive activation of the protein, which occurs in approximately 80% of colon tumors and cell lines, in growth control. These studies involved analysis of the effects of the tyrosine kinase specific inhibitor Herbimycin A (HA) on monolayer growth and pp60c-src enzymatic activity using model colon tumor cell lines. HA induced dose-dependent growth inhibition of all colon tumor cell lines examined possessing elevated pp60c-src activity. In HT29 cells the dose-dependent growth inhibition induced by HA correlated with dose-dependent pp60c-src inactivation. Inactivation of pp60c-src was shown to be an early event in response to treatment with HA which preceded induction of HT29 colon tumor cell growth inhibition. The growth effects of HA towards the colon tumor cells examined did not appear to be associated with induction of differentiation or a cytotoxic mechanism of action as changes in morphology were not detected in treated cells and growth inhibition (and pp60c-src inactivation) were reversible upon release from treatment with the compound. The results suggested the constitutive activation of pp60c-src functioned as a proliferative signal in colon tumor cells. Correlation between pp60c-src inactivation and growth inhibition was also observed using HA chemical derivatives confirming the role of tyrosine kinase inactivation by these compounds in inhibition of mitogenic signalling. In contrast, in AS15 cells possessing specific antisense mRNA mediated inactivation of pp60c-src, HA-induced inactivation of the related pp62c-yes tyrosine kinase, which is also activated during colon tumor progression, was not associated with induction of monolayer growth inhibition. These results suggested a function for the constitutively activated pp62c-yes protein in colon tumor cell proliferation which was different from that of activated pp60c-src. (Abstract shortened by UMI.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The urokinase-type plasminogen activator receptor (u-PAR) promotes extracellular matrix degradation, invasion and metastasis. A first objective of this dissertation was to identify cis-elements and trans-acting factors activating u-PAR gene expression through a previously footprinted (–148/–124) promoter region. Mobility shifting experiments on nuclear extracts of a high u-PAR-expressing colon cancer cell line (RKO) indicated Sp1, Sp3 and a factor similar to, but distinct from, AP-2α bound to an oligonucleotide spanning –152/–135. Mutations preventing the binding of the AP-2α-related factor reduced u-PAR promoter activity. In RKO, the expression of a dominant negative AP-2 (AP-2αB) diminished u-PAR promoter activity, protein and u-PAR mediated laminin degradation. Conversely, u-PAR promoter activity in low u-PAR-expressing GEO cells was increased by AP-2αA expression. PMA treatment, which induces u-PAR expression, caused an increased amount of the AP-2α-related factor-containing complex in GEO, and mutations preventing AP-2α-like and Sp1/Sp3 binding reduced the u-PAR promoter stimulation by PMA. In resected colon cancers, u-PAR protein amounts were related to the amount of the AP-2α-related factor-containing complex. In conclusion, constitutive and PMA- inducible u-PAR gene expression and -proteolysis are mediated partly through transactivation via a promoter sequence (–152/435) bound with an AP-2α-related factor and Sp1/Sp3. ^ A second interest of this dissertation was to determine if a constitutively active Src regulates the transcription of the u-PAR gene, since c-src expression increases invasion in colon cancer. Increased u-PAR protein and laminin degradation paralleling elevated Src activity was evident in SW480 colon cancer cells stably expressing a constitutively active Src (Y- c-src527F). Nuclear run-on experiments indicated that this was due largely to transcriptional activation. While transient transfection of SW480 cells with Y-c-src527F induced a u-PAR-CAT-reporter, mutations preventing Sp1-binding to promoter region –152/435 abolished this induction. Mobility shift assays revealed increased Sp1 binding to region –152/135 with nuclear extracts of Src-transfected SW480 cells. Finally, the amounts of endogenous u-PAR in resected colon cancers significantly correlated with Src-activity. These data suggest that u-PAR gene expression and proteolysis are regulated by Src, this requiring the promoter region (–152/–135) bound with Sp1, thus, demonstrating for the first time that transcription factor Sp1 is a downstream effector of Src. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coordination of the apoptotic program necessitates the timely expression of sensor, effector, and mediator molecules. Fas/CD95, a transmembrane receptor which tethers the cell-death machinery, triggers apoptosis to maintain immune homeostasis, tolerance, and surveillance. Dysregulation in Fas-mediated apoptosis, either from disproportionate expression or disruptions in the downstream signaling pathway, manifests in autoimmune disorders and certain malignant progression. ^ In this project, the transcriptional requirements underlying two modulators of Fas expression were investigated. In T-lymphocytes, activation results in potent Fas upregulation followed by an acquisition of sensitivity towards FasL-mediated apoptosis. Human fas promoter cloning and analysis have identified a cis-element critical for inducible Fas expression. EMSA studies using this region demonstrated a constitutive association with the transcription factor Sp1 and inducible NF-κB binding in response to activation. These interactions were mutually exclusive, as the rB/Sp1 element bound with recombinant Sp1 was readily displaced by increasing amounts of NF-κB p50. Thus, Fas upregulation by T-cell activation stimuli is dependent upon NF-κB binding at the fas promoter. ^ The capacity of Sp1 to direct basal Fas expression was examined through mutagenesis of several GC-rich regions within the core fas promoter. Reporter analysis of single or combinatorial mutant GC-box constructs revealed usage of a particular GC-element in moderating over 50% of basal fas transcription. Inducible expression was Sp1-independent, however, since activated Jurkat cells containing fas Sp1-mutant constructs retained equivalent reporter induction. Overall, a dual-level of transcriptional control exists in fas, where constitutive activity is monitored through Sp1 binding, whereas T-cell activation obligates NF κB transactivation. ^ In response to genotoxic damage, p53 modulates Fas levels partly by a transcription-dependent mechanism. Reconstitution of wild-type p53 in the hepatoma cell line Hep3B readily induced Fas transcription. Furthermore, fas promoter analysis identified an undescribed p53 responsive element which, when deleted, ablated p53-mediated reporter activity. Therefore, the pro-apoptotic function mediated by p53 is driven partially through the enhancement of Fas expression. ^ Altogether, events elicting Fas transcription may invoke single or overlapping mechanisms that converge at the level of promoter activity. Agents that enhance or attenuate these pathways may be therapeutically beneficial in modulating the expression and sensitivity towards Fas-dependent apoptosis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to examine the relationship between enterotoxigenic ETEC and travelers' diarrhea over a period of five years in Guadalajara, Mexico. Specifically, this study identified and characterized ETEC from travelers with diarrhea. The objectives were to study the colonization factor antigens, toxins and antibiotic sensitivity patterns in ETEC from 1992 to 1997 and to study the molecular epidemiology of ETEC by plasmid content and DNA restriction fragment patterns. ^ In this survey of travelers' diarrhea in Guadalajara, Mexico, 928 travelers with diarrhea were screened for enteric pathogens between 1992 and 1997. ETEC were isolated in 195 (19.9%) of the patients, representing the most frequent enteric pathogen identified. ^ A total of 31 antimicrobial susceptibility patterns were identified among ETEC isolates over the five-year period. ^ The 195 ETEC isolates contained two to six plasmids each, which ranged in size from 2.0 to 23 kbp. ^ Three different reproducible rRNA gene restriction patterns (ribotypes R-1 to R-3) were obtained among the 195 isolates with the enzyme, HindIII. ^ Colonization factor antigens (CFAs) were identified in 99 (51%) of the 195 ETEC strains studied. ^ Cluster analysis of the observations seen in the four assays all confirmed the five distinct groups of study-year strains of ETEC. Each group had a >95% similarity level of strains within the group and <60% similarity level between the groups. In addition, discriminant analysis of assay variables used in predicting the ETEC strains, reveal a >80% relationship between both the plasmid and rRNA content of ETEC strains and study-year. ^ These findings, based on laboratory observations of the differences in biochemical, antimicrobial susceptibility, plasmid and ribotype content, suggest complex epidemiology for ETEC strains in a population with travelers' diarrhea. The findings of this study may have implications for our understanding of the epidemiology, transmission, treatment, control and prevention of the disease. It has been suggested that an ETEC vaccine for humans should contain the most prevalent CFAs. Therefore, it is important to know the prevalence of these factors in ETEC in various geographical areas. ^ CFAs described in this dissertation may be used in different epidemiological studies in which the prevalence of CFAs and other properties on ETEC will be evaluated. Furthermore, in spite of an intense search in near 200 ETEC isolates for strains that may have clonal relationship, we failed to identify such strains. However, further studies are in progress to construct suitable live vaccine strains and to introduce several of CFAs in the same host organism by recombinant DNA techniques (Dr. Ann-Mari Svennerholm's lab). (Abstract shortened by UMI.)^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A variety of human cancers overexpress the HER-2/neu proto-oncogene. Among patients with breast and ovarian cancers this HER-2/ neu overexpression indicates an unfavorable prognosis, with a shorter overall survival duration and a lower response rate to chemotherapeutic agents. Downregulation of HER-2/neu gene expression in cancer cells through attenuation of HER-2/neu promoter activity is, therefore, an attractive strategy for reversing the transformation phenotype and thus the chemoresistance induced by HER-2/neu overexpression. ^ A viral transcriptional regulator, the adenovirus type 5 E1A (early region 1A) that can repress the HER-2/neu promoter, had been identified in the laboratory of Dr. Mien-Chie Hung. Following the identification of the E1A gene, a series of studies revealed that repression of HER-2/neu by the E1A gene which can act therapeutically as a tumor suppressor gene for HER-2/ neu-overexpressing cancers. ^ The results of these preclinical studies became the basis for a phase I trial for E1A gene therapy among patients with HER-2/neu-overexpressing breast and ovarian cancer. In this dissertation, three primary questions concerned with new implications of E1A gene therapy are addressed: First, could E1A gene therapy be incorporated with conventional chemotherapy? Second, could the E1A gene be delivered systemically to exert an anti-tumor effect? And third, what is the activity of the E1A gene in low-HER-2/neu-expressing cancer cells? ^ With regard to the first question, the studies reported in this dissertation have shown that the sensitivity of HER-2/neu-overexpressing breast and ovarian cancer to paclitaxel is in fact enhanced by the downregulation of HER-2/neu overexpression by E1A. With regard to the second question, studies have shown that the E1A gene can exert anti-tumor activity by i.v. injection of the E1A gene complexed with the novel cationic liposome/protamine sulfate/DNA type I (LPDI). And with regard to the third question, the studies of low-HER-2/ neu-expressing breast and ovarian cancers reported here have shown that the E1A gene does in fact suppress metastatic capability. It did not, however, suppress the tumorigenicity. ^ Three conclusions can be drawn from the experimental findings reported in this dissertation. Combining paclitaxel with E1A gene therapy may expand the implications of the gene therapy in the future phase II clinical trial. Anti-tumor activity at a distant site may be achieved with the i.v. injection of the E1A gene. Lastly when administered therapeutically the anti-metastatic effect of the E1A gene in low-HER-2/neu-expressing breast cancer cells may prevent metastasis in primary breast cancer. (Abstract shortened by UMI.)^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colon cancer is the second leading cause of cancer mortality in the U.S. Surgery is the only truly effective human colon cancer (HCC) therapy due to marked intrinsic drug resistance. The inefficacy of therapies developed for metastatic HCC suggests that advances in colon cancer chemoprevention and chemotherapy will be needed to reduce HCC mortality. The dietary fiber metabolite butyrate (NaB) is a candidate cancer chemopreventive agent that inhibits growth, promotes differentiation and stimulates apoptosis of HCC cells. Epidemiological and experimental studies suggest that dietary fiber protects against the development of HCC, however, recent large prospective trials have not found significant protection. ^ The first central hypothesis of this dissertation project is that the diversity of phenotypic changes induced by NaB in HCC cells includes molecular alterations that oppose its chemopreventive action and thereby limit its efficacy. We investigated the effect of NaB on the expression/activity of epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) in HCC HT29 cells. NaB treatment induced a 13-fold increase in EGFR expression in concert with its chemopreventive action in vitro, i.e., induction of growth suppression and G1 arrest, apoptosis and a differentiated phenotype. NaB-induced EGFR was active based on multiple lines of evidence. The EGFR was: (1) heavily phosphorylated at Tyrosine (P-Tyr); (2) associated with the cytoskeleton; (3) localized at the cell surface, and activated in response to EGF; and (4) NaB treatment of the cells induced activation of the EGFR effector Erk1/2. NaB treatment also induced a 7-fold increase in COX-2 expression. The NaB-induced COX-2 was active based on significantly increased PGE2 production. ^ The second central hypothesis is that NaB treatment would render HCC cells more chemosensitive to chemotherapy agents based on the increased apoptotic index induced by NaB. NaB treatment chemosensitized HT29 cells to 5-FU and doxorubicin, despite increases in the expression of P-glycoprotein and a related drug resistance protein (MRP). ^ These results raise the intriguing possibility that the chemopreventive effects of fiber may require concomitant treatment with EGFR and/or COX-2 inhibitors. Similarly, NaB may be a rational drug to combine with existing chemotherapeutic agents for the management of advanced HCC patients. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we demonstrated the novel functions of two important prognostic markers in breast cancer, EGFR and b -catenin in proliferation and/or other transformation phenotype. ^ First we demonstrated that EGFR could be detected in the nucleus in highly proliferating tissues, including primary breast cancer samples and a breast cancer cell line. We found that EGFR contained a strong transactivation domain, complexed with an AT-rich consensus DNA sequence and activated promoters containing this sequence, including cyclin D1 promoter. Therefore, EGFR may function as a transcription factor to activate genes required for highly proliferating activity such as cyclin D1 in breast cancer. ^ In the second part of this study, we identified b -catenin as an important prognostic factor in breast cancer. We found that cyclin D1 was one of the genes regulated by b -catenin in breast cancer cells. The transactivation activity of b -catenin correlated significantly with cyclin D1 expression in both breast cancer cell lines and in breast cancer patient samples, in which high b -catenin activity correlated with poor prognosis of the patients. Moreover, blockage of b -catenin activity significantly inhibited transformation phenotypes in breast cancer cells. Therefore, our results indicate that b -catenin can be involved in breast cancer formation and/or progression and may serve as a target for breast cancer therapy. ^