556 resultados para Biology, Molecular|Biology, Cell|Health Sciences, Toxicology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bortezomib (VELCADE™, formerly known as PS-341) is a selective and potent inhibitor of the proteasome that was recently FDA-approved for the treatment of multiple myeloma. Despite its success in multiple myeloma and progression into clinical trials for other malignancies, bortezomib's exact mechanism of action remains undefined. The major objective of this study was to evaluate the anticancer activity of this drug using in vitro and in vivo pancreatic cancer models and determine whether bortezomib-induced apoptosis occurs via induction of endoplasmic reticular (ER) stress. The investigation revealed that bortezomib inhibited tumor cell proliferation via abrogation of cdk activity and induced apoptosis in pancreatic cancer cell lines. I hypothesized that bortezomib-induced apoptosis was triggered by a large accumulation ubiquitin-conjugated proteins that resulted in ER stress. My data demonstrated that bortezomib induced a unique type of ER stress in that it inhibited PKR-like ER kinase (PERK) and subsequent phosphorylation of eukaryotic initiation factor 2α (eif2α), a key event in translational suppression. The combined effects of proteasome inhibition and the failure to attenuate translation resulted in an accumulation of aggregated proteins (proteotoxicity), JNK activation, cytochrome c release, caspase-3 activation, and DNA fragmentation. Bortezomib also enhanced apoptosis induced by other agents that stimulated the unfolded protein response (UPR), demonstrating that translational suppression is a critical cytoprotective mechanism during ER stress. Tumor cells attempt to survive bortezomib-induced ER stress by sequestering aggregated proteins into large structures, termed aggresomes. Since histone deacetylase 6 (HDAC6) is essential for aggresome formation, tumor cells may be sensitized to bortezomib-induced apoptosis by blocking HDAC function. My results demonstrated that HDAC inhibitors disrupted aggresome formation and synergized with bortezomib to induce apoptosis in pancreatic cancer or multiple myeloma cells in vitro and in orthotopic pancreatic tumors in vivo. Taken together, my data establish a mechanistic link between bortezomib-induced aggresome formation, ER stress, and apoptosis and identify a novel therapeutic strategy for the treatment of pancreatic cancer and other hematologic and solid malignancies. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular migration is essential to many normal cellular processes. In tumor cells, aberrant activation of the normal pathways regulating migration is one of the critical steps in the development of metastasis. Previously, I demonstrated for the first time that overexpression of Tiam1, a guanine nucleotide exchange factor (GNEF) for small G proteins in the Rho family, could alter migration in colorectal tumor cells. ^ This dissertation focuses on the roles of Tiam1 in promoting cell migration, survival, and metastasis of colorectal carcinoma cells, utilizing the model system I developed. To determine the in vivo phenotype of the migratory cell lines, athymic nude mice were injected with cells into the orthotopic site. Several of the mice injected with cells of increased migratory potential had metastases. Thus, the in vitro selection for increased migration resulted in increased metastatic potential in vivo, and therefore, the Tiam1-overexpressing cells provide a model to examine signal transduction pathways important to this process. ^ To examine effects of Tiam1 signaling on small G proteins critical to cellular functions associated with migration, I examined the activation status of the small G proteins Rac, Rho, and Cdc42. The cells of increased migratory potential have increased GTP-bound Rac and Rho, compared to control SW480 cells. Cells that overexpress Tiam1 are more migratory and are resistant to detachment-induced death, or anoikis. To determine which effects and phenotypes were Tiam1-specific, we utilized siRNA to downregulate Tiam1 expression. These results demonstrate that Tiam1 is sufficient but not required for the migration of colorectal carcinoma cells in our model system, and that the biologically selected cells have additional changes that promote migration besides the increase in Tiam1. I also show that Tiam1 protects colorectal carcinoma cells from detachment-induced death, but is not required for anoikis resistance in the biologically selected migratory cells. ^ In summary, my studies demonstrate a heretofore-unknown regulator of phenotypes critical to the development of colorectal carcinoma metastases, overexpression of Tiam1. Understanding the mechanism by which Tiam1 contributes to cellular migration and metastasis is crucial to developing desperately needed new therapies for colorectal carcinoma. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have implicated Ca2+ fluxes in the control of apoptosis but their exact roles in regulating the process remain obscure. Because Ca2+ can serve as a signal for cytochrome c release from isolated mitochondria, we hypothesized that alterations in intracellular Ca2+ compartmentalization might serve as a release signal in whole cells undergoing apoptosis. Exposure of human PC-3 prostate adenocarcinoma cells to staurosporine or DNA damaging agent (doxorubicin) but not to anti-Fas antibody led to early release of Ca2+ from the endoplasmic reticulum and subsequent accumulation of Ca2+ within mitochondria. Both events were blocked in cells stably transfected with Bcl-2 but were not affected by treatment with the pancaspase inhibitor, zVADfmk. The effects of staurosporine were associated with re-localization of Bax from the cytosol to both endoplasmic reticular and mitochondrial membranes. Neither ER Ca 2+ pool depletion nor mitochondrial Ca2+ uptake were observed in DU-145 cells that possess a frameshift mutation in the Bax gene unless wild-type Bax was restored via adenoviral gene transfer. Cytochrome c release and downstream features of apoptosis were attenuated by treatment with an inhibitor of mitochondria) Ca2+ uptake (RU-360). Although, direct pharmacological ER Ca2+ pool emptying in cells treated with thapsigargin did not lead to early cytochrome c release, pretreatment of cells with staurosporine dramatically sensitized mitochondria to thapsigargin-induced cytochrome c release. Together, our data demonstrate that ER-to-mitochondrial Ca2+ fluxes promote cytochrome c release and apoptosis in cells exposed to some (but not all) pro-apoptosic stimuli. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

15-Lipoxygenase 2 (15-LOX2) is a recently cloned human lipoxygenase that shows tissue-restricted expression in prostate, lung, skin, and cornea. The protein level and enzymatic activity of 15-LOX2 have been shown to be down-regulated in prostate cancers compared with normal and benign prostate tissues. We report the cloning and functional characterization of 15-LOX2 and its three splice variants (termed 15-LOX2sv-a, 15-LOX2sv-b, and 15-LOX2sv-c) from primary prostate epithelial (NHP) cells. Western blotting with multiple NHP cell strains and prostate cancer (PCa) cell lines reveals that the expression of 15-LOX2 is lost in all PCa cell lines, accompanied by decreased enzymatic activity. 15-LOX2 is expressed at multiple subcellular locations, including cytoplasm, cytoskeleton, cell-cell border, and nucleus. Surprisingly, the three splice variants of 15-LOX2 are mostly excluded from the nucleus. To elucidate the relationship between nuclear localization, enzymatic activity, and tumor suppressive functions, we established PCa cell clones stably expressing 15-LOX2 or 15-LOX2sv-b. The 15-LOX2 clones express 15-LOX2 in the nuclei and possess robust enzymatic activity, whereas 15-LOX2sv-b clones show neither nuclear protein localization nor arachidonic acid-metabolizing activity. Interestingly, both 15-LOX2- and 15-LOX2sv-b-stable clones proliferate much slower in vitro when compared with control clones. When orthotopically implanted in nude mouse prostate, both 15-LOX2 and 15-LOX2sv-b suppress PC3 tumor growth in vivo. Finally, cultured NHP cells lose the expression of putative stem/progenitor cell markers, slow down in proliferation, and enter senescence. Several pieces of evidence implicate 15-LOX2 plays a role in replicative senescence of NHP cells: (1) promoter activity and the mRNA and protein levels of 15-LOX2 and its splice variants are upregulated in serially passaged NHP cells, which precede replicative senescence and occur in a cell-autonomous manner; (2) PCa cells stably expressing 15-LOX2 or 15-LOX2sv-b show a passage-related senescence-like phenotype; (3) enforced expression of 15-LOX2 or 15-LOX2sv-b in young NHP cells induce partial cell-cycle arrest and senescence-like phenotypes. Together, these results suggest that 15-LOX2 suppress prostate tumor development and do not necessarily depend on arachidonic acid-metabolizing activity and nuclear localization. Also, 15-LOX2 may serve as an endogenous prostate senescence gene and its tumor-suppressing functions might be associated with its ability to induce cell senescence. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to characterize the effects of IL-6 on endothelial cells and to investigate the role of IL-6 in the angiogenesis of ovarian carcinomas. We evaluated human ovarian carcinoma clinical specimens and determined that high expression of IL-6 was associated with increased tumor vascularization. Additionally, endothelial cells derived from the ovary and mesentery expressed the IL-6 receptor (IL-6R), and their stimulation with the exogenous ligand activated downstream signaling molecules and enhanced cell migration. Dual immunohistochemical staining for CD-31 and IL-6R revealed IL-6R expression on human endothelial cells within normal ovary and ovarian carcinomas. To further investigate the possible proangiogenic function of IL-6, Gelfoam sponges containing IL-6 or bFGF were implanted into the subcutis of BALB/c mice. IL-6 containing sponges were vascularized to the same extent as bFGF containing sponges. ^ Chronic stress can adversely affect disease progression. Stimulation of ovarian carcinoma cell lines with concentrations of catecholamines achieved in individuals experiencing chronic stress resulted in a substantial increase in IL-6 production. It was determined that stress mediators regulate IL-6 expression through the β-adrenergic receptor and Src. These data illustrate one mechanism by which chronic stress may influence tumor progression. ^ To investigate whether IL-6 contributes to the angiogenesis of ovarian carcinomas, we isolated low IL-6 expressing clones from the SKOV3.ip1 cell line and transfected them with a plasmid encoding the IL-6 gene. We observed no difference in tumor weight between high and low IL-6 expressing cells. However, while low IL-6 expressing tumors were highly vascularized, high IL-6 expressing tumors appeared hypervascularized. Immunohistochemical analysis revealed that all tumors exhibited robust expression of additional proangiogenic molecules. ^ Collectively, these studies indicate that IL-6 secreted by ovarian cancer cells is a highly proangiogenic cytokine. However, IL-6 is but one of several proangiogenic molecules produced by ovarian cancer, and its inhibition may not be sufficient to inhibit angiogenesis of ovarian carcinoma. The findings presented in this dissertation provide insight into the function of IL-6 as a regulator of angiogenesis. Understanding of the role of proangiogenic molecules such as IL-6 in ovarian carcinoma may have important implications for therapy directed at the vascular component of this disease. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ultraviolet radiation (UVR) present in sunlight is the primary cause of nonmelanoma skin cancer and has been implicated in the development of cutaneous malignant melanoma. Ultraviolet radiation also suppresses the immune response. In the majority of studies investigating the mechanisms regulating UV-induced immune suppression, UV is used to suppress the induction of immune responses. Equally important, is the ability of UVR to suppress established immune responses, such as the recall reaction in humans, which protects against microbial infections. We established a murine model to help elucidate the immunological mechanisms governing UV-induced suppression of the elicitation of immune responses. 80 kJ/m2 of UVR nine days after sensitization consistently suppressed the elicitation of delayed type hypersensitivity reaction to C. albicans . We found ultraviolet A (320±400 nm) radiation was as effective as solar-simulated ultraviolet A + B (290±400 nm) in suppressing the elicitation of an established immune response. The mechanisms involved in UV-induced suppression of the induction & elicitation of the immune response are similar. For example, mice irradiated with UV after immunization generated antigen-specific T suppressor cells. Injection of monoclonal antibodies to IL-10 or recombinant IL-12 immediately after exposure to UVR blocked immune suppression. Liposomes containing bacteriophage T4N5 to the skin of mice also prevented immune suppression, demonstrating an essential role for ultraviolet-induced DNA damage in the suppression of established immune reactions. ^ In addition to damaging DNA, UV initiates immune suppression through the isomerization of urocanic acid in the epidermis. Here we provide evidence that cis-UCA induces systemic immunosuppression via the serotonin (5-hydroxyyryptamine; 5-HT) receptor. Biochemical and immunological analysis indicate that cis-UCA binds to, and activates, the serotonin receptor. Moreover, serotonin specific antibodies block UV- and/or cis-UCA-induced immune suppression. Our findings identify cis-UCA as novel serotonin receptor ligand and indicate that serotonin receptor engagement can activate immune suppression. Cumulatively, our data suggest that similar immune regulatory mechanisms are activated regardless of whether we expose mice to solar-simulated UV (UVA + UVB) radiation or UVA only, and that ultraviolet radiation activates similar immunologic pathways to suppress the induction or the elicitation of the immune response. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epidermal growth factor receptor (EGFR) and its ligands are overexpressed in many human tumors, including bladder and pancreas, correlating with a more aggressive tumor phenotype and poor patient prognosis. We initiated the present study to characterize the heterogeneity of gefitinib responsiveness in a panel of human bladder and pancreatic cancer cell lines in order to identify the biological characteristics of EGFR-dependent proliferation that could be used to prospectively identify drug-sensitive tumors. A second objective was to elucidate how to best exploit these results by utilizing gefitinib in combination therapy. To these ends, we examined the effects of the EGFR antagonist gefitinib on proliferation and apoptosis in a panel of 18 human bladder cancer cell lines and 9 human pancreatic cancer cell lines. Our data confirmed the existence of marked heterogeneity in Iressa responsiveness with less than half of the cell lines displaying significant growth inhibition by clinically relevant concentrations of the drug. Gefitinib responsiveness was found to be p27 kip1 dependent as DNA synthesis was restored following exposure to p27siRNA. Unfortunately, Iressa responsiveness was not closely linked to surface EGFR or TGF-α expression in the bladder cancer cells, however, cellular TGF-α expression correlated directly with Iressa sensitivity in the pancreatic cancer cell lines. These findings provide the potential for prospectively identifying patients with drug-sensitive tumors. ^ Further studies aimed at exploiting gefitinib-mediated cell cycle effects led us to investigate if gefitinib-mediated TRAIL sensitization correlated with increased p27kip1 accumulation. We observed that increased TRAIL sensitivity following gefitinib exposure was not dependent on p27 kip1 expression. Additional studies initiated to examine the role(s) of Akt and Erk signaling demonstrated that exposure to PI3K or MEK inhibitors significantly enhanced TRAIL-induced apoptosis at concentrations that block target phosphorylation. Furthermore, combinations of TRAIL and the PI3K or MEK inhibitors increased procaspase-8 processing above levels observed with TRAIL alone, indicating that the effects were exerted at the level of caspase-8 activation, considered the earliest step in the TRAIL pathway. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L) is a member of the TNF family of cytokines that induces apoptosis in a variety of tumor cells while sparing normal cells. However, many human cancer cell lines display resistance to TRAIL-induced apoptosis and the mechanisms contributing to resistance remain controversial. Previous studies have demonstrated that the dimeric transcription factor Nuclear Factor kappa B (NFκB) is constitutively active in a majority of human pancreatic cancer cell lines and primary tumors, and although its role in tumor progression remains unclear it has been suggested that NFκB contributes to TRAIL resistance. Based on this, I examined the effects of NFκB inhibitors on TRAIL sensitivity in a panel of nine pancreatic cancer cell lines. I show here that inhibitors of NFκB, including two inhibitors of the proteasome (bortezomib (Velcade™, PS-341) and NPI-0052), a small molecule inhibitor of IKK (PS1145), and a novel synthetic diterpene NIK inhibitor (NPI-1342) reverse TRAIL resistance in pancreatic cancer cell lines. Further analysis revealed that the expression of the anti-apoptosic proteins BclXL and XIAP was significantly decreased following exposure to these inhibitors alone and in combination with TRAIL. Additionally, treatment with NPI0052 and TRAIL significantly reduced tumor burden relative to the control tumors in an L3.6pl orthotopic pancreatic xenograft model. This was associated with a significant decrease in proliferation and an increase in caspase 3 and 8 cleavage. Combination therapy employing PS1145 or NPI-1342 in combination with TRAIL also resulted in a significant reduction in tumor burden compared to either agent alone in a Panc1 orthotopic xenograft model. My studies show that combination therapy with inhibitors of NFκB alone and TRAIL is effective in pre-clinical models of pancreatic cancer and suggests that the approach should be evaluated in patients. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of proteasome inhibitors in cancer has received much attention with the recent FDA approval of bortezomib (Velcade/PS-341). However, in the chronic lymphocytic leukemia (CLL) clinical trial, bortezomib was not as effective as it was in vitro. Accordingly, results in prostate cancer were not remarkable, although regression of lymphadenopathy was observed. This response was also seen in CLL. ^ The proteasome degrades ∼80% of intracellular proteins. Although specific pathways affected by proteasome inhibitors are known, there are still unidentified mechanisms by which they induce apoptosis. The efficacy and mechanism of action of the reversible proteasome inhibitor bortezomib were compared to the novel irreversible inhibitor NPI-0052 in this study, and their mechanisms of action in CLL and prostate cancer were examined. ^ NPI-0052 inhibited proteasome activity and induced apoptosis with more rapid kinetics than bortezomib in CLL. Inhibition of proteasome activity with NPI-0052 was also more durable. Interestingly, bortezomib is cleared from the serum within 15min, which is insufficient time for bortezomib to effectively inhibit the proteasome. However, only 5min exposure was needed for NPI-0052 to produce maximal proteasome inhibition. The data suggest that bortezomib's slow kinetics and reversible nature limit its potential in vivo and the use of NPI-0052 should be considered. ^ In examining the mechanism(s) by which bortezomib and NPI-0052 induce apoptosis in CLL, both were found to elicit the ER stress pathway. A stromal cell co-culture system prevented apoptosis induced by both proteasome inhibitors, suggesting that if such factors in vivo were responsible for reducing bortezomib's efficacy, NPI-0052 would not prove useful either. Finally, Lyn, a Src family kinase (SFK), was decreased in response to bortezomib and NPI-0052 and correlated with apoptosis induction in CLL and prostate cancer. Both proteasome inhibitors specifically targeted Lyn rather than SFKs in general. ^ SFKs are overexpressed in cancer and involved in cell signaling, survival, and metastasis. In prostate cancer cells, both proteasome inhibition and Lyn-silencing significantly inhibited migration. Preliminary evidence also suggested that Lyn downregulation decreases invasion potential. Together, these data suggest that proteasome inhibitors are potential candidates for anti-metastasic therapy and further investigation is warranted for the use of Lyn-targeted therapy to treat metastases. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over-expression of the receptor tyrosine kinase ErbB2 is prevalent in approximately 30% of human breast carcinomas and confers Taxol resistance. In breast cancer cells, Taxol induces tubulin polymerization and hyperstable microtubule formation. This in turn prematurely activates Cdc2 kinase allowing early entry into the G2/M phase of the cell cycle resultant in mitotic catastrophe followed by apoptosis. Over-expression of ErbB2 upregulates p21Cip1, which inhibits Cdc2 activation, and leads to Taxol resistance in patients. However, the mechanism of ErbB2-mediated p21 Cip1 upregulation is unclear. Here in this study, we investigated the mechanism of ErbB2 downstream signaling events leading to upregulation. The CDKN1A (p21Cip1) gene promoter contains numerous cis-elements including a Signal transducer and activator of transcription (STAT) Inducable Element (SIE) located at -679 kb. Our studies showed ErbB2 overexpressing cells had increased activated levels of STAT3, and therefore we hypothesized that STAT3 is responsible for the upregulation of the p21Cip1 promoter by ErbB2. EMSA and ChIP assays confirmed the binding of STAT3 to the p21Cip1 promoter and luciferase assays showed higher p21 Cip1 promoter activity in ErbB2 over-expressing transfectants when compared to parental cells, in a STAT3 binding site dependant manner. Additionally, reduced level of STAT3 led to reduced p21Cip1 protein expression and promoter activity indicating that both the STAT3 binding site and STAT3 protein are required for ErbB2-mediated p21Cip1 upregulation. Further investigation of ErbB2 downstream signaling showed increased Src kinase activity in ErbB2 over-expressing cells which was required for ErbB2-mediated STAT3 activation and p21Cip1 increase. Treatment of ErbB2 over-expressing resistant cells with STAT3 inhibitor peptides sensitized the cells to Taxol. In addition to classical signal transduction pathways, I identified a novel ErbB2 mediated regulatory mechanism of p21Cip1. I found that a nuclear ErbB2 and STAT3 complex binds directly to the p21Cip1 promoter offering a non-classical mechanism of p21Cip1 promoter regulation. These data suggest that ErbB2 over-expression can confer Taxol resistance of breast cancer cells by transcriptional upregulation of p21 Cip1 via activation of STAT3 by Src kinase and also by cooperation with nuclear ErbB2. The data suggest a potential clinical mechanism for STAT3 inhibitors in sensitizing ErbB2 over-expressing breast cancers to Taxol. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammalian cells express 7 β-tubulin isotypes in a tissue specific manner. This has long fueled the speculation that different isotypes carry out different functions. To provide direct evidence for their functional significance, class III, IVa, and VI β-tubulin cDNAs were cloned into a tetracycline regulated expression vector and stably transfected Chinese hamster ovary cell lines expressing different levels of ectopic β-tubulin were compared for effects on microtubule organization, microtubule assembly and sensitivity to antimitotic drugs. It was found that all three isotypes coassembled with endogenous β-tubulin. βVI expression caused distinct microtubule rearrangements including microtubule dissociation from the centrosome and accumulation at the cell periphery; whereas expression of βIII and βVIa caused no observable changes in the interphase microtubule network. Overexpression of all 3 isotypes caused spindle malformation and mitotic defects. Both βIII and βIVa disrupted microtubule assembly in proportion to their abundance and thereby conferred supersensitivity to microtubule depolymerizing drugs. In contrast, βVI stabilized microtubules at low stoichiometry and thus conferred resistance to many microtubule destabilizing drugs but not vinblastine. The 3 isotypes caused differing responses to microtubule stabilizing drugs. Expression of βIII conferred paclitaxel resistance while βVI did not. Low expression of βIVa caused supersensitivity to paclitaxel, whereas higher expression resulted in the loss of supersensitivity. The results suggest that βIVa may possess an enhanced ability to bind paclitaxel that increases sensitivity to the drug and acts substoichiometrically. At high levels of βVIa expression, however, microtubule disruptive effects counteract the assembly promoting pressure exerted by increased paclitaxel binding, and drug supersensitivity is lost. From this study, I concluded that β-tubulin isotypes behave differently from each other in terms of microtubule organization, microtubule assembly and dynamics, and antimitotic drug sensitivity. The isotype composition of cell can impart subtle to dramatic effects on the properties of microtubules leading to potential functional consequences and opening the opportunity to exploit differences in microtubule isotype composition for therapeutic gain. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both angiogenesis and vasculogenesis contribute to the formation and expansion of tumor neovasculature. We demonstrated that bone marrow (BM)-derived cells migrated to TC71 Ewing's tumors and differentiated into endothelial cells lining perfused, functional tumor neovessels. In addition, a substantial fraction of recruited, BM-derived cells resided in the vessel vicinity but did not demonstrate endothelial differentiation. Rather, these perivascular cells expressed desmin and PDGFR-β, implying pericyte-like/vascular smooth muscle cell differentiation. No defined, consensus set of markers exists for endothelial progenitor cells (EPCs) and the specific subsets of BM cells that participate in vessel formation are poorly understood. We used a functional in vivo assay to investigate the roles performed by specific human- and murine-derived stem/progenitor subpopulations within Ewing's sarcoma tumors. CD34 +45+, CD34+38-, VEGFR2 + and Sca1+Gr1+ cells were demonstrated to establish residence within the expanding tumor vascular network and differentiate into endothelial cells and pericytes. By constrast, CD34-45 + and Sca1-Gr1+ cells predominantly localized to sites outside the Ewing's tumor vasculature, and differentiated into macrophages. Cytokines, such as VEGF, influence the recruitment of BM cells and their incorporation into the tumor vasculature. VEGF165-inhibited TC/siVEGF7-1 Ewing's tumors showed delayed in vivo tumor growth, decreased vessel density, and reduced infiltration of BM progenitor cells. We tested whether another chemoattractant, Stromal Cell-Derived Factor-1 (SDF-1), could augment the growth of these VEGF165-inhibited TC/siVEGF 7-1 tumors by enhancing the recruitment of BM cells and stimulating neovasculature expansion. SDF-1 promoted progenitor cell chemotaxis and retainment of BM-derived pericyte precursors in close association with functional, perfused tumor blood vessels. Treatment of TC/siVEGF7-1 tumors with adenovirus-SDF-1α resulted in augmented tumor size, enhanced pericyte coverage of tumor neovessels, remodeling of vascular endothelium into larger, functional structures, and upregulation of PDGF-BB, with no effect on VEGF165. Taken together, these findings suggest that the recruitment of BM stem/progenitor cells plays an important role in the growth of Ewing's tumors. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adenylyl cyclase (AC) converts ATP into cAMP, which activates protein kinase A (PKA). Activation of PKA leads to the phosphorylation of specific substrates. The mechanism of specificity of PKA phosphorylation baffled researchers for many years. The discovery of A Kinase Anchoring Proteins (AKAPs) has helped to unravel this mystery. AKAPs function to target PKA to specific regions within the cell. They also anchor other enzymes, receptors, or channels leading to tightly regulated signaling modules. Several studies have suggested an important role for activated PKA in these complexes, including the AKAPs yotiao and muscle AKAP (mAKAP). Yotiao, a plasma membrane AKAP, anchors PP1, NMDA receptors, IP3 receptors, and heart potassium channel subunit KCNQI. PKA phosphorylation of NMDA receptors as well as KCNQI leads to increased channel activity. Patients with mutations in KCNQI or yotiao that cause loss of targeting of KCNQI develop long QT syndrome, which can be fatal. mAKAP anchors several CAMP/PKA-regulated pathways to the nuclear envelope in cardiac myocytes. The necessity of activated PKA in these complexes led to the hypothesis that AC is also anchored. The results indicate that AC does associate with yotiao in brain and heart, specifically with AC types I-III, and IX. Co-expression of AC II or III with yotiao leads to inhibition of each isoform's activity. Binding assays revealed that yotiao binds to the N-terminus of AC II and that this region can reverse the inhibition of AC II, but not AC III, indicating unique binding sites on yotiao. AC II binds directly to as 808-957 of yotiao. Y808-957 acts as a dominant negative as the addition of it to rat brain membranes results in a ∼40% increase in AC activity. Additionally, AC was also found to associate with mAKAP in heart, specifically with AC types II and V. The binding site of AC was mapped to 275-340 of mAKAP, while mAKAP binds to the soluble domains of AC V as a complex. These results indicate that interactions between AC and AKAPs are specific and that AC plays an important role in AKAP-targeted signaling. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of insulin-like growth factor binding protein 2 (IGFBP2) is associated with progression and poor survival in many types of human cancer (such as prostate, ovarian, adrenocortical, breast, colorectal carcinomas, leukemia, and high-grade gliomas). We therefore hypothesize that IGFBP2 is a key regulator of tumor progression. We tested our hypothesis in gliomas using the somatic gene transfer RCAS-tva mouse model system, which permits the introduction of specific genes into specific, cell lineages, in this case glial cells (RCAS: Replication competent avian sarcomavirus, tv-a: avian RCAS virus receptor). Mice are transgenic and harbor the tv-a receptor under the control of a glial-specific promoter and study genes are cloned into the RCAS vector for post-natal intracranial delivery. For these experiments, the study genes were IGFBP2, platelet-derived growth factor B (PDGFB), K-Ras, Akt, and IIp45 (invasion inhibitory protein 45 kDa; known to bind and block IGFBP2 activity), which were delivered separately and in combination. Our results show that PDGFB signaling leads exclusively to the formation of low-grade (WHO grade II) oligodendrogliomas. PDGFB delivered in combination with IGFBP2 results in the formation of anaplastic oligodendrogliomas (WHO grade III), which are characterized by increased cellularity, vascular proliferation, small regions of necrosis, increased mitotic activity, and increased activation of the Akt pathway. IIp45 injected in combination with PDGFB and IGFBP2 ablates IGFBP2-induced tumor progression, which results in formation of low-grade oligodendrogliomas, and an overall reduction in tumor incidence. K-Ras expression was required to form astrocytomas with either IGFBP2 or Akt, indicating the activation of two separate pathways is necessary for gliomagenesis. In ex vivo experiments, blockade of Akt by an inhibitor led to decreased viability of cells co-expressing IGFBP2 versus PDGFB expression alone. This study provides definitive evidence, for the first time, that: (1) IGFBP2 plays a role in activation of the Akt pathway, (2) IGFBP2 collaborates with K-Ras or PDGFB in the development and progression of two major types of glioma, and (3) IGFBP2-induced tumor progression can be ablated by IIp45 or by specific inhibition of the Akt pathway. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toxic side effect is a major problem in cancer chemotherapy. Therefore, identification and development of new agents that can selectively remove cancer with low toxicity to normal cells would have significant clinical impact. Compared to normal cells, cancer cells are under intrinsic stress with elevated reactive oxygen species (ROS) production. My research aimed to exploit this biochemical alteration as a novel basis to develop a selective agent. The goal of my dissertation research was to test the hypothesis that since most cancer cells are under higher oxidative stress than normal cells, compounds which modulate oxidative stress such as pphenylethyl isothiocyanate (PEITC) may preferentially impact cancer cells through ROS-mediated mechanisms and have implications in cancer therapeutics. Using H-RasV1-transformed ovarian cells and their immortalized non-tumorigenic counterparts, I discovered that the transformed cells exhibited increased ROS generation and this intrinsic stress rendered them highly dependent on glutathione antioxidant system to maintain redox balance. Abolishing this system by PEITC through depletion of glutathione and inhibition of GPX activity led to a preferential ROS increase in the transformed cells. The severe ROS accumulation caused oxidative damage to the mitochondria membranes and impaired the membrane integrity leading to massive cell death. In contrast, PEITC caused only a modest increase of ROS insufficient to cause significant cell death in non-transformed cells. Promisingly, PEITC exhibited anticancer activity in vivo by prolonging survival of mice bearing the Ras-transformed ovarian xenograft with minimal toxic side effect. Further study in chronic lymphocytic leukemia (CLL) cells isolated from the blood samples of CLL patients revealed that PEITC not only exhibits promising selectivity against primary CLL cells compared to normal lymphocytes, but it is also effective in removing CLL cells resistant to standard anti-cancer drug Fludarabine. In conclusion, the data implicate that intrinsic oxidative stress in cancer cells could serve as a biochemical basis to develop selective novel anticancer agents such as PEITC, with significant therapeutic implications. ^