511 resultados para Biology, Microbiology|Health Sciences, Pathology|Health Sciences, Immunology
Resumo:
Integrins are important as the primary cell adhesion molecule providing information about the extracellular microenvironment to the interior of the cell to influence cellular behavior such as differentiation, proliferation and apoptosis. Apoptotic death due to loss of adhesion is termed anoikis. In this study we have obtained a parental human gastric adenocarcinoma cell line that yielded two variant lines that had differing responses to lack of adhesion. The STAD.APO cell line undergoes apoptosis when denied adherence and the STAD.ARR cell line enters into cell cycle arrest under the identical suspended conditions. We have shown that cyclin A and cyclin D mRNA and protein are down regulated when cells are denied adherence for 24 hours in tissue culture wells previously coated with poly-HEMA. To test whether cyclin A was able to rescue cells from cell cycle arrest and/or anoikis by overriding the cell cycle machinery we transfected the full length cDNA in to each cell type. Surprisingly we found that anoikis and cell cycle arrest due to suspended conditions was not affected by overexpression of cyclin A protein, but that growth under adhered conditions was reduced compared to vector alone control transfectants. Further, we transfected other cell lines; ST7, gastric cancer, MDA-MB-4.35, breast cancer, and HPB T-cell leukemic and in no case were suspended culturing conditions overcome by cyclin A. This result indicates an additional level of regulation for the cell cycle machinery. Additionally, soluble collagen was shown to be able to save from anoikis and also from cell cycle arrest while the β1 specific mAb 33B6 was only able to save from anoikis. Immunofluorescent studies show that soluble collagen creates clusters of β1 with FAK and also β1 with actin in the STAD.ARR cells but does not in the STAD.APO cells. This result indicates that the phenotypes under suspended conditions between these cell lines may diverge at their requirements for integrin ligation. Additionally we characterized the nature of anoikis by showing cytochrome c release, caspase 3, p21 and p53 activation in STAD.APO cells. Thus, our results have implications in the understanding of integrin biology and neoplastic progression. ^
Resumo:
Retinitis pigmentosa (RP) is a name given to a group of inherited retinal dystrophies that lead to progressive photoreceptor degeneration, and thus, visual impairment. It is evident at both the clinical and the molecular level that these are heterogeneous disorders, with wide variation in severity, mode of inheritance, and phenotype. The genetics of RP are not simple; the disease can be inherited in dominant, recessive, X-linked, and digenic modes. Autosomal dominant RP (adRP) results from mutations in at least ten mapped loci, but there may be dozens of genetic loci where mutations can cause RP. To date, there are over a hundred genes known to cause retinal degenerative diseases, and less than half of these have been cloned (RetNet). Among the dozens of retinitis pigmentosa loci known to exist, only a few have been identified and the remainders are inferred from linkage studies. Today, the genes for seven of the twelve-adRP loci have been identified, and these are rhodopsin, peripherin/RDS, NRL, ROM1, CRX, RP13 and RP1. My research projects involved a combination of the continued search for genes involved in retinal dystrophies, as well the investigation into the role of peripherin/RDS and RP1 in the disease etiology of autosomal dominant RP. ^ Most of the mutations leading to inherited retinal disorders have been identified in predominately retina expressed genes like rhodopsin, peripherin/RDS, and RP1. Expressed sequence tags (ESTs) that were retina-specific were culled from sequence databases and, together with laboratory analysis, were analyzed as potential candidate genes for retinal dystrophies. Thirteen of the fifty-five identified retina-specific ESTs mapped to within candidate regions for inherited retinopathies. One of these is RP1L1, a homologue of RP1 and a potential cause of adRP. ^ Once a disease-associated gene has been identified, elucidating the role of that gene in the visual process is essential for understanding what happens when the process is defective as it is in adRP. My next projects involved investigating the role of a novel 5′ donor +3 splice site mutation on the mRNA of peripherin/RDS in adRP affected individuals, and comparative sequencing in RP1 to define conserved regions of the protein. Comparative sequencing is a powerful way to delineate critical regions of a sequence because different regions of a gene have different functions, and each region is subject to different levels of functional or structural constraints. Establishing a framework of conserved domains is beneficial not only for structural or functional studies, but can also aid in determining the potential effects of mutations. With the completion of sequencing of human genome, and other organisms such as Saccharomyces cerevisiae, Caenorhabditis elegans , and Drosophila, the facility of comparative sequencing will only increase in the future. Comparative sequencing has already become an established procedure for pinpointing conserved regions of a protein, and is an efficient way to target regions of a protein for experimental and/or evolutionary analysis. ^
Resumo:
Evidence suggests that sex-based differences in immune function may predispose women to numerous hypersensitivity conditions such as Systemic lupus erythematosus (SLE), Hashimoto's thyroiditis and asthma. To date, the exact mechanisms of sexual dimorphism in immunity are not fully characterized but sex hormones such as 17-β estradiol (E2) and progesterone (PR) are believed to be involved. Since E2 and PR may modulate the production of critical regulatory cytokines, we sought to characterize their effects on the in vitro human type-1/type-2 cytokine balance. We hypothesized that E2 and/or PR vary cytokine production and influence costimulatory molecule expression and apoptosis. We first described the effect of E2 and/or PR on type-1 (IFN-γ and IL-12) and type-2 (IL-4 and IL-10) cytokine production by human peripheral blood mononuclear cells (PBMC) treated with various T-lymphocyte and monocyte stimuli. E2 and/or PR were each used at concentrations similar to those found at the maternal-fetal interface during pregnancy. At this dose, E2 increased IFN-γ and IL-12 production and PR decreased IFN-γ production and tended to increase IL-4 production. Furthermore, the combination of E2+PR decreased IL-12 production. This suggests that E2 shifts the type-1/type-2 cytokine balance towards a type-1 response and that PR and E2+PR shift the balance towards a type-2 response. Next, we used intracellular cytokine detection to demonstrate that E2 and/or PR are capable of altering cytokine production of CD3+ T-cells and the CD3+CD4+ and CD3+CD8+ subsets. In addition, we used the H9 T-lymphocyte cell line and the THP-1 monocyte cell line to show that E2 and/or PR can induce cytokine effects in both T-cells and monocytes independent of their interaction. Lastly, we determined the effect of E2 and/or PR on costimulatory molecule expression and apoptosis as potential mechanisms for the cytokine-induced alterations. E2 increased and PR decreased CD80 expression on THP-1 cells and PR and E2+PR decreased CD28 expression in PBMC and Jurkat cells. Furthermore, E2, PR and E2+PR increased Fas-mediated apoptosis in Jurkat cells and E2 increased FasL expression on THP-1 cells. Thus, E2 and/or PR may alter the cytokine balance by modulating the CD28/CD80 costimulatory pathway and apoptosis. ^
Resumo:
Adenosine has been implicated to play a role in inflammatory processes associated with asthma. Most notable is adenosine's ability to potentiate mediator release from mast cells. Mast cells are bone marrow derived inflammatory cells that can release mediators that have both immediate and chronic effects on airway constriction and inflammation. Most physiological roles of adenosine are mediated through adenosine receptors. Four subtypes of adenosine receptors have been identified, A1, A2A, A2B and A 3. The mechanisms by which adenosine can influence the release of mediators from lung tissue mast cells is not understood due to lack of in vivo models. Mice deficient in the enzyme adenosine deaminase (ADA) have been generated. ADA controls the levels of adenosine in tissues and cells, and consequently, adenosine accumulates in the lungs of ADA-deficient mice. ADA-deficient mice develop features seen in asthmatics, including lung eosinophilia and mucus hypersecretion. In addition, lung tissue mast cell degranulation was associated with elevated adenosine in ADA-deficient lungs and can be prevented by ADA enzyme therapy. We established primary murine lung mast cell cultures, and used real time RT-PCR and immunofluorescence to demonstrate that A 2A, A2B and A3 receptors are expressed on murine lung mast cells. Studies using selective adenosine receptor agonists and antagonists and A3 receptor deficient (A3−/−) mast cells suggested that activation of A3 receptors could induce mast cell mediator release in vitro. Furthermore, this mediator release was associated with increases in intracellular Ca++ that appeared to be mediated through a Gi and PI3K pathway. In addition, nebulized A3 receptor agonist directly induced lung mast cell degranulation in wild type mice while having no effect in A3−/− mice. These results demonstrate that the A3 receptor plays an important role in adenosine mediated murine lung mast cell degranulation. Therefore, the A3 adenosine receptor and its signaling pathways may represent novel therapeutic targets for the treatment and prevention of asthma. ^
Resumo:
Complex molecular events underlie vertebrate eye development and disease. The eye is composed of two major tissue types: the anterior and posterior segments. During development, the retinal progenitor cells differentiate into six neuronal and one non-neuronal cell types. These cell types later organize into the distinct laminar structure of the mature retina which occupies the posterior segment. In the developed anterior segment, both the ciliary body and trabecular meshwork regulate intraocular pressure created by the aqueous humor. The disruption in intraocular pressure can lead to a blinding condition called glaucoma. To characterize molecular mechanisms governing retinal development and glaucoma, two separate mouse knockout lines carrying mutations in math5 and myocilin were subjected to a series of in vivo analyses. ^ Math5 is a murine homologue of Drosophila atonal , a bHLH proneural gene essential for the formation of photoreceptor cells. The expression of math5 coincides with the onset of retinal ganglion cell differentiation. The targeted deletion of mouse math5 revealed that a null mutation inhibits the formation of a majority of the retinal ganglion cells. The mutation also interferes with the normal development of other retinal cell types such as amacrine, bipolar and photoreceptor cells. These results suggest that math5 is a proneural gene responsible for differentiation of retinal ganglion cells and may also have a role in normal development of other neuronal cell types within the retina. ^ Myocilin has two unique protein coding regions bearing homology to non-muscle myosin of Dictyostelium discoideum and to olfactomedin, an extracellular matrix molecule first described in the olfactory epithelium of the bullfrog. Recently, autosomal dominant forms of myocilin mutations have been found in individuals with primary open-angle glaucoma. The genetic linkage to glaucoma suggests a role of myocilin in normal intraocular pressure and ocular function. However, the analysis of mice heterozygous and homozygous for a targeted null mutation in myocilin indicates that it is dispensable for normal intraocular pressure or ocular function. Additionally, the lack of a discernable phenotype in both heterozygous and null mice suggests that haploinsufficiency is not a critical mechanism for MYOC-associated glaucoma in humans. Instead, disease-causing mutations likely act by gain of function. ^ In summary, these studies provide novel insights into the embryonic development of the vertebrate retina, and also begin to uncover the molecular mechanisms responsible for the pathogenesis of glaucoma. ^
Resumo:
Preeclampsia is a disease that affects 3–5% of all pregnancies. The cause is unknown and there is currently no treatment. The disease poses significant health risks to both the mother and the fetus. To date, research on the topic has not produced a convincing cause for the development of the hallmark symptoms of preeclampsia. The hypothesis of an agonistic autoimmune response to the AT1 receptor is presented. Immunoglobulin fractions from normotensive and preeclampsia patients were prepared for experimental tests. Model systems were tested in three categories to determine if AT 1 receptor specific activation and receptor-ligand interaction was caused by a suspected autoantibody. Activation was found in rat neonatal cardiornyocytes that caused an increased contraction rate. This activity was found in preeclampsia patients, absent in normotensive patients. The activation was antagonized by losartan, an AT1 receptor antagonist, and by epitope peptide competition of the receptor-ligand type interaction. This epitope was the 7 amino acid peptide fragment, AFHYESQ, a sequence present in the second extracellular loop of the AT1 receptor. The patterns of AT1 receptor activation were also found in a human trophoblast cell line, HTR8, with an effect on Pai-1 secretion, a factor that plays a role in preventing hypercoagulation. In human mesangial cells, the AT1 receptor autoantibody present in the immunoglobulin fraction from preeclampsia patients was found to stimulate the secretion of Pai-1, and IL-6, a factor that plays a role in the activation of an inflammatory response. This activity was found in samples from preeclampsia patients, but absent in normotensive patients. Tests including losartan, AFHYESQ, and a non-competitive peptide demonstrated that the secretion of Pai-1 and IL-6 met the criteria for AT1 receptor activation by the suspected agonistic autoantibody. These three model systems address relevant pathophysiology for preeclampsia patients, including increased cardiac output, abnormal placentation, and renal damage. The AT1 receptor agonistic autoantibody is potentially a key player in the development of the pathology and symptoms of preeclampsia. ^
Resumo:
Obesity is a complex multifactorial disease and is a public health priority. Perilipin coats the surface of lipid droplets in adipocytes and is believed to stabilize these lipid bodies by protecting triglyceride from early lipolysis. This research project evaluated the association between genetic variation within the human perilipin (PLIN) gene and obesity-related quantitative traits and disease-related phenotypes in Non-Hispanic White (NHW) and African American (AA) participants from the Atherosclerosis Risk in Communities (ARIC) Study. ^ Multivariate linear regression, multivariate logistic regression, and Cox proportional hazards models evaluated the association between single gene variants (rs2304794, rs894160, rs8179071, and rs2304795) and multilocus variation (rs894160 and rs2304795) within the PLIN gene and both obesity-related quantitative traits (body weight, body mass index [BMI], waist girth, waist-to-hip ratio [WHR], estimated percent body fat, and plasma total triglycerides) and disease-related phenotypes (prevalent obesity, metabolic syndrome [MetS], prevalent coronary heart disease [CHD], and incident CHD). Single variant analyses were stratified by race and gender within race while multilocus analyses were stratified by race. ^ Single variant analyses revealed that rs2304794 and rs894160 were significantly related to plasma triglyceride levels in all NHWs and NHW women. Among AA women, variant rs8179071 was associated with triglyceride levels and rs2304794 was associated with risk-raising waist circumference (>0.8 in women). The multilocus effects of variants rs894160 and rs2304795 were significantly associated with body weight, waist girth, WHR, estimated percent body fat, class II obesity (BMI ≥ 35 kg/m2), class III obesity (BMI ≥ 35 kg/m2), and risk-raising WHR (>0.9 in men and >0.8 in women) in AAs. Variant rs2304795 was significantly related to prevalent MetS among AA males and prevalent CHD in NHW women; multilocus effects of the PLIN gene were associated with prevalent CHD among NHWs. Rs2304794 was associated with incident CHD in the absence of the MetS among AAs. These findings support the hypothesis that variation within the PLIN gene influences obesity-related traits and disease-related phenotypes. ^ Understanding these effects of the PLIN genotype on the development of obesity can potentially lead to tailored health promotion interventions that are more effective. ^
Resumo:
Linkage and association studies are major analytical tools to search for susceptibility genes for complex diseases. With the availability of large collection of single nucleotide polymorphisms (SNPs) and the rapid progresses for high throughput genotyping technologies, together with the ambitious goals of the International HapMap Project, genetic markers covering the whole genome will be available for genome-wide linkage and association studies. In order not to inflate the type I error rate in performing genome-wide linkage and association studies, multiple adjustment for the significant level for each independent linkage and/or association test is required, and this has led to the suggestion of genome-wide significant cut-off as low as 5 × 10 −7. Almost no linkage and/or association study can meet such a stringent threshold by the standard statistical methods. Developing new statistics with high power is urgently needed to tackle this problem. This dissertation proposes and explores a class of novel test statistics that can be used in both population-based and family-based genetic data by employing a completely new strategy, which uses nonlinear transformation of the sample means to construct test statistics for linkage and association studies. Extensive simulation studies are used to illustrate the properties of the nonlinear test statistics. Power calculations are performed using both analytical and empirical methods. Finally, real data sets are analyzed with the nonlinear test statistics. Results show that the nonlinear test statistics have correct type I error rates, and most of the studied nonlinear test statistics have higher power than the standard chi-square test. This dissertation introduces a new idea to design novel test statistics with high power and might open new ways to mapping susceptibility genes for complex diseases. ^
Resumo:
Adenosine has been implicated in chronic lung diseases such as asthma and COPD. Most physiological actions of adenosine are mediated through G-protein coupled adenosine receptors. Four subtypes of adenosine receptors have been identified, A1, A2A, A2B, and A 3. However, the specific roles of the various adenosine receptors in processes central to asthma and COPD are not well understood in part due to the lack of adequate animal models that examine the effect of adenosine on the development of lung disease. In this study we have investigated the expression and function of the A3 adenosine receptor in pulmonary eosinophilia and mucus production/secretion in adenosine deaminase (ADA)-deficient mice in which adenosine levels are elevated. ADA-deficient mice develop features of asthma and COPD, including lung eosinophilia and mucus hyperplasia in association with elevated lung adenosine levels. The A3 receptor was found to be expressed in eosinophils and mucus producing cells in the airways of ADA-deficient. Disruption of A3 receptor signaling in ADA-deficient mice by genetic removal of the receptor or treatment with MRS 1523, a selective A3 adenosine receptor antagonist, prevented airway eosinophilia and mucus production. Although eosinophils were decreased in the airways of ADA-deficient mice with disrupted A3 receptor signaling, elevations in circulating and lung interstitial eosinophils persisted, suggesting signaling through the A3 receptor is needed for the migration of eosinophils into the airways. Further examination of the role of the A3 receptor in mucus biology demonstrated that the A3 receptor is neither required nor is overexpression of the receptor in clara cells sufficient for mucus production in naive mice. Transgenic overexpression of the A3 receptor did elucidate a role for the A3 receptor in the secretion of mucus into the airways of ovalbumin challenged mice. These findings identify an important role for the A3 adenosine receptor in regulating lung eosinophilia and mucus secretion in inflammatory lung diseases. Therefore, the A3 adenosine receptor may represent a novel therapeutic target for the treatment and prevention of asthma. ^
Resumo:
The ultraviolet radiation (UVR) present in sunlight is the primary cause of nonmelanoma skin cancer and has been implicated in the development of cutaneous malignant melanoma. Ultraviolet radiation also suppresses the immune response. In the majority of studies investigating the mechanisms regulating UV-induced immune suppression, UV is used to suppress the induction of immune responses. Equally important, is the ability of UVR to suppress established immune responses, such as the recall reaction in humans, which protects against microbial infections. We established a murine model to help elucidate the immunological mechanisms governing UV-induced suppression of the elicitation of immune responses. 80 kJ/m2 of UVR nine days after sensitization consistently suppressed the elicitation of delayed type hypersensitivity reaction to C. albicans . We found ultraviolet A (320±400 nm) radiation was as effective as solar-simulated ultraviolet A + B (290±400 nm) in suppressing the elicitation of an established immune response. The mechanisms involved in UV-induced suppression of the induction & elicitation of the immune response are similar. For example, mice irradiated with UV after immunization generated antigen-specific T suppressor cells. Injection of monoclonal antibodies to IL-10 or recombinant IL-12 immediately after exposure to UVR blocked immune suppression. Liposomes containing bacteriophage T4N5 to the skin of mice also prevented immune suppression, demonstrating an essential role for ultraviolet-induced DNA damage in the suppression of established immune reactions. ^ In addition to damaging DNA, UV initiates immune suppression through the isomerization of urocanic acid in the epidermis. Here we provide evidence that cis-UCA induces systemic immunosuppression via the serotonin (5-hydroxyyryptamine; 5-HT) receptor. Biochemical and immunological analysis indicate that cis-UCA binds to, and activates, the serotonin receptor. Moreover, serotonin specific antibodies block UV- and/or cis-UCA-induced immune suppression. Our findings identify cis-UCA as novel serotonin receptor ligand and indicate that serotonin receptor engagement can activate immune suppression. Cumulatively, our data suggest that similar immune regulatory mechanisms are activated regardless of whether we expose mice to solar-simulated UV (UVA + UVB) radiation or UVA only, and that ultraviolet radiation activates similar immunologic pathways to suppress the induction or the elicitation of the immune response. ^
Resumo:
Lipopolysaccharide (LPS) and interferon-gamma (IFN) activate macrophages and produce nitric oxide (NO) by initiating the expression of inducible Nitric Oxide Synthase (iNOS). Prolonged LPS/IFN-activation results in the death of macrophage-like RAW 264.7 cells and wild-type murine macrophages. This study was implemented to determine how NO contributes to LPS/IFN-induced macrophage death. The iNOS-specific inhibitor L-NIL protected RAW 264.7 cells from LPS/IFN-activated death, supporting a role for NO in the death of LPS/IFN-activated macrophages. A role for iNOS in cell death was confirmed in iNOS-/- macrophages which were resistant to LPS/IFN-induced death. Cell death was accompanied by nuclear condensation, caspase 3 activation, and PARP cleavage, all of which are hallmarks of apoptosis. The involvement of NO in modulating the stress-activated protein kinase (SAPK)/c-jun N-terminal kinase (JNK) signal transduction pathway was examined as a possible mechanism of LPS/IFN-mediated apoptosis. Western analysis demonstrated that NO modifies the phosphorylation profile of JNK and promotes activation of JNK in the mitochondria in RAW 264.7 cells. Inhibition of JNK with sIRNA significantly reduced cell death in RAW 264.7 cells, indicating the participation of the JNK pathway in LPS/IFN-mediated death. JNK has been demonstrated to induce mitochondrial-mediated apoptosis through modulation of Bcl-2 family members. Therefore, the effect of NO on the balance between pro- and anti-apoptotic Bcl-2 family members was examined. In RAW 264.7 cells, Bim was upregulated and phosphorylated by LPS/IFN independently of NO. However, co-immunoprecipitation studies demonstrated that NO promotes the association of Bax with the BimL splice variant. Examination of Bax phosphorylation by metabolic labeling demonstrated that Bax is basally phosphorylated and becomes dephosphorylated upon LPS/IFN treatment. L-NIL inhibited the dephosphorylation of Bax, indicating that Bax dephosphorylation is NO-dependent. NO also mediated LPS/IFN-induced downregulation of Mcl-1, an anti-apoptotic Bcl-2 family member, as demonstrated by Western blotting for Mcl-1 protein expression. Thus, NO contributes to macrophage apoptosis via a JNK-mediated mechanism involving interaction between Bax and Bim, dephosphorylation of Bax, and downregulation of Mcl-1. ^
Resumo:
Protection against Mycobacterium tuberculosis infection requires an effective cell mediated immune response leading to granuloma formation and organism containment. Trehalose 6,6'-dimycolate (TDM), a glycolipid present on the mycobacterial cell wall, has been implicated as a key component in establishment of the granulomatous response. TDM has potent immunoregulatory and inflammatory properties; the acute response to TDM produces pathology resembling early Mycobacterium tuberculosis infection. We have further developed this model to study TDM-specific cell mediated immune responses that may play a role in the later stages of infection and pathology. Lungs from mice immunized with TDM in the form of a water-oil-water (w/o/w) emulsion demonstrate heightened histological damage, inflammation, lymphocytic infiltration, and vascular endothelial cell damage upon subsequent challenge with TDM. This exacerbated response can be adoptively transferred to naïve mice via transfer of non-adherent lymphocytes from TDM immunized mice. To identify the cell phenotype(s) regulating this response, purified non-adherent cell populations (CD4+ and CD8+ T cells; CD19 + B cells) were isolated from TDM immunized mice, adoptively transferred into naive mice, and subsequently challenged with TDM. Lung histopathology and cytokine production identified CD4+ cells as the critical cell phenotype regulating the TDM-specific hypersensitive response. The role of CD1d in presentation of TDM was examined. CD1d, a molecule known to present lipids to T cells, was identified as critical in development of the hypersensitive response. CD4+ cells were isolated from TDM-immunized CD1d -/- mice and adoptively transferred into naive wild type mice, followed by TDM challenge. These mice were deficient in development of the hypersensitive granulomatous response, signifying the importance of CD1d in the generation of TDM-specific CD4+ cells. The experiments presented in this dissertation provide further evidence for involvement of TDM-specific cell mediated immune response in elicitation of pathological damage during Mycobacterium tuberculosis infection. ^
Resumo:
Recent data suggest that the generation of new lymphatic vessels (i.e. lymphangiogenesis) may be a rate-limiting step in the dissemination of tumor cells to regional lymph nodes. However, efforts to study the cellular and molecular interactions that take place between tumor cells and lymphatic endothelial cells have been limited due to a lack of lymphatic endothelial cell lines available for study. ^ I have used a microsurgical approach to establish conditionally immortalized lymphatic endothelial cell lines from the afferent mesenteric lymphatic vessels of mice. Characterization of lymphatic endothelial cells, and tumor-associated lymphatic vessels revealed high expression levels of VCAM-1, which is known to facilitate adhesion of some tumor cells to vascular endothelial cells. Further investigation revealed that murine melanoma cells selected for high expression of α4, a counter-receptor for VCAM-1, demonstrated enhanced adhesion to lymphatic endothelial cells in vitro, and increased tumorigenicity and lymphatic metastasis in vivo, despite similar lymphatic vessel numbers. ^ Next, I examined the effects of growth factors that regulate lymphangiogenesis, and report that several growth factors are capable of activating survival and proliferation pathways of lymphatic endothelial cells. The dual protein tyrosine kinase inhibitor AEE788 (EGFR and VEGFR-2) inhibited the activation of Akt and MAPK in lymphatic endothelial cells responding to multiple growth factors. Moreover, oral treatment of mice with AEE788 decreased lymphatic vessel density and production of lymphatic metastasis by human colon cancer cells growing in the cecum of nude mice. ^ In the last set of experiments, I investigated the surgical management of lymphatic metastasis using a novel model of sentinel lymphadenectomy in live mice bearing subcutaneous B16-BL6 melanoma. The data demonstrate that this procedure when combined with wide excision of the primary melanoma, significantly enhanced survival of syngeneic C57BL/6 mice. ^ Collectively, these results indicate that the production of lymphatic metastasis depends on lymphangiogenesis, tumor cell adhesion to lymphatic endothelial cells, and proliferation of tumor cells in lymph nodes. Thus, lymphatic metastasis is a multi-step, complex, and active process that depends upon multiple interactions between tumor cells and tumor associated lymphatic endothelial cells. ^
Resumo:
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a disease with world wide consequences, affecting nearly a third of the world's population. The established vaccine for TB; an attenuated strain of Mycobacterium bovis Calmette Guerin (BCG), has existed virtually unchanged since 1921. Intensive research is focused on developing a TB vaccine that can surpass and improve the existing BCG vaccine. Lactoferrin, an iron binding protein found in mucosal secretions and granules of neutrophils was hypothesized to be an ideal adjuvant to enhance the efficacy of the BCG vaccine. Specifically, Lactoferrin enhanced the ratio of IL-12:IL-10 production from macrophages stimulated with LFS or infected with BCG, indicating the potential to affect T-cell development in vivo. Five different vaccination protocols were investigated for generation of host protective responses against MTB infection using Lactoferrin admixed to the BCG vaccine. Mice immunized and boosted at 2 weeks with BCG/Lactofefrin increased host protection against MTB infection by decreasing organ bacterial load and reducing lung histopathology. The observed postchallenge results paralleled with increasing production of IFN-γ, IL-2, TNF-α, and IL-12 from BCG stimulated splenocytes. In vitro studies examined possible mechanisms of Lactoferrin action on BCG infected macrophages and dendritic cells. Addition of Lactoferrin to BCG infected macrophages and dendritic cells increased stimulation of presensitized CD3+ and CD4+ T-cells. Analysis by fluorescent activated cell sorting (FACS) revealed an increase in surface expression of MHC I and decreased ratio of CD80/86 from BCG infected macrophages cultured with Lactoferrin. In contrast, Lactoferrin decreased surface expression of MHC I, MHC II, CD80, CD86, and CD40, but increased CD 11c, from BCG infected dendritic cells, indicating involvement of adhesion molecules. Overall, these studies indicate that Lactoferrin is a useful and effective adjuvant to improve efficacy of the BCG vaccine by enhancing generation of mycobacterial antigen specific T-cell responses through promotion of antigen presentation and T-cell stimulation.^
Resumo:
While there is considerable information on the molecular aberrations associated with the development of endometrial cancer, very little is known of changes in gene expression associated with its antecedent premalignant condition, endometrial hyperplasia. In order to address this, we have compared the level of expression of components of the IGF-I signaling pathway in human endometrial hyperplasia to their level of expression in both the normal pre-menopausal endometrium and endometrial carcinoma. We have also characterized the molecular characteristics of endometrial hyperplasia as it occurs in a murine model of hormone-dependent tumorigenesis of the female reproductive tract. ^ There was a significant and selective increase in the expression of the IGF-I Receptor (IGF-IR) in both human hyperplasia and carcinoma as compared to the normal endometrium. The receptor was also activated, as judged by increased tyrosine phosphorylation. In addition, in hyperplasia and carcinoma there is activation of the downstream component Akt. The expression of the PTEN tumor suppressor is decreased in a subset of subjects with hyperplasia and in all of the carcinomas. The simultaneous loss of PTEN expression and increased IGF-IR activation in the hyperplastic endometrium was associated with an increased incidence of endometrial carcinoma elsewhere within the uterus. In the rodent hyperplasia, there was a significant increase in the expression and activation of Akt that appears to be attributable to a marked increase in the expression of IGF-II. ^ Our studies have demonstrated the pathologic proliferation of both the human and rodent endometrium is linked to a marked activation of the Akt pathway. However the cause of this dysregulation is different in the human disease and the animal model. In rodents, hyperplasia is linked to increased expression of one of the ligands of the IGF-IR, IGF-II. In humans the IGF-I receptor itself is upregulated and activated. Additional activation of the Akt pathway via the suppression of PTEN activity, results in conditions that are associated with the marked increase in the probability of developing endometrial cancer. Our data suggests that increased activity of the IGF-I pathway plays the key role in the hyperproliferative state characteristic of endometrial hyperplasia and cancer.^