103 resultados para Complementary DNA library


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammalian COP9 signalosome, which connects signaling with the ubiquitin-mediated proteasome degradation pathway, is implicated in cell cycle regulation and DNA damage response. However, whether COP9 is dysregulated in cancers has not been well established. Here, we showed that COP9 subunit 6 (CSN6) was upregulated in malignant breast and thyroid tumors and positively correlated with MDM2 expression. Investigation of the underlying mechanism suggested that CSN6 stabilized MDM2, thereby accelerating the degradation of p53. We generated mice carrying a targeted disruption of the Csn6 gene, and found that the mice with both alleles disrupted (Csn6-/- ) died in early embryogenesis (E7.5). Csn6+/- mice were sensitized to undergo γ-radiation-induced p53-dependent apoptosis in both thymus and developing central nervous system. Consequently. Csn6 +/- mice were more susceptible to the lethal effects of high-dose γ-radiation than wild-type mice. Notably, Csn6+/- mice were less susceptible to γ-radiation-induced tumorigenesis and had better long-term survival after low-dose γ-radiation exposure compared with wild-type animals, indicating that loss of CSN6 enhanced p53-mediated tumor suppression in vivo. In summary, the regulation of MDM2-p53 signaling by CSN6 plays a significant role in DNA damage-mediated apoptosis and tumorigenesis, which suggests that CSN6 may potentially be a valuable diagnostic marker for cancers with a dysregulated MDM2-p53 axis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ends of eukaryotic chromosomes are protected by specialized ribonucleoprotein structures termed telomeres. Telomeres protect chromosomes from end-to-end fusions, inappropriate repair and degradation. Disruption of this complex activates an ATM/ATR DNA damage response (DDR) pathway. One component of the complex is the Protection Of Telomeres 1 (POT1) protein, an evolutionarily conserved protein which binds single-stranded 3' overhang and is required for both chromosomal end protection and telomere length regulation. The mouse contains two POT1 orthologs, Pot1a and Pot1b. Here we show that both proteins colocalize with telomeres through interaction with the adapter protein TPP1. In addition, compared to Pot1a, the OB-folds of Pot1b possess less sequence specificity for telomeres. Disruption of POT1 proteins result in telomere dysfunction and activation of an ATR-dependent DDR at telomeres, suggesting that this response is normally suppressed by POT1 binding to the single-stranded G-overhang. ^ Telomeres are maintained by telomerase, and its absence in somatic cells results in telomere progressive loss that triggers the activation of p53. Telomere dysfunction initiates genomic instability and induces both p53-dependent replicative senescence and apoptosis to suppress tumorigenesis. In the absence of functional p53, this genomic instability promotes cancer. It was previously not known which aspect of the p53 dependent DNA damage response is important to suppress tumorigenesis initiated by dysfunctional telomeres. The p53R172P knock-in mouse, which is unable to induce apoptosis but retains intact cell cycle arrest/cellular senescence pathways, allowed us to examine whether p53-dependent apoptosis is a major tumor suppression pathway initiated in the setting of telomere dysfunction. Spontaneous tumorigenesis remains potently suppressed in late generation telomerase null mice possessing the p53P/P mutation. These results suggest that suppression of spontaneous tumorigenesis initiated by dysfunctional telomeres requires activation of a p53-dependent senescence pathway. In addition, we used another knock-in mouse model with a p53R172H (p53H) point mutation to test the hypothesis that telomere dysfunction promotes chromosomal instability and accelerates the onset of tumorigenesis in vivo in the setting of this most common gain-of-function mutation in the human Li Fraumeni cancer syndrome. We unexpectedly observed that telomerase null mice possessing dysfunctional telomeres in the setting of the p53H/+ mutation develop significantly fewer tumors, die prematurely and exhibit higher level of cellular senescence, apoptosis and elevated genomic instability compared to telomerase intact p53H/+ and telomerase null p53+/+ mice. These contrasting results thus link cancer and aging to the functional status of telomeres and the integrity of the p53 pathway. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CpG island methylation within single gene promoters can silence expression of associated genes. We first extended these studies to bidirectional gene pairs controlled by single promoters. We showed that hypermethylation of bidirectional promoter-associated CpG island silences gene pairs (WNT9A/CD558500, CTDSPL/BC040563, and KCNK15/BF 195580) simultaneously. Hypomethylation of these promoters by 5-aza-2'-deoxycytidine treatment reactivated or enhanced gene expression bidirectionally. These results were further confirmed by luciferase assays. Methylation of WNT9A/CD558500 and CTDSPL/BC040563 promoters occurs frequently in primary colon cancers and acute lymphoid leukemia, respectively. ^ Next we sought to understand the origins of hypermethylation in cancer. CpG islands associated with tumor suppressor genes are normally free from methylation, but can be hypermethylated in cancer. It remains poorly understood how these genes are protected from methylation in normal tissues. In our studies, we aimed to determine if cis-acting elements in these genes are responsible for this protection, using the tumor suppressor gene p16 as a model. We found that Alu repeats located both upstream and downstream of the p16 promoter become hypermethylated with age. In colon cancer samples, the methylation level is particularly high, and the promoter can also be affected. Therefore, the protection in the promoter against methylation spreading could fail during tumorigenesis. This methylation pattern in p16 was also observed in cell lines of different tissue origins, and their methylation levels were found to be inversely correlated with that of active histone modification markers (H3K4-3me and H3K9-Ac). To identify the mechanism of protection against methylation spreading, we constructed serial deletions of the p16 protected region and used silencing of a neomycin reporter gene to evaluate the protective effects of these fragments. A 126 bp element was identified within the region which exerts bidirectional protection against DNA methylation, independently of its transcriptional activity. The protective strength of this element is comparable to that of the HS4 insulator. During long-term culture, the presence of this element significantly slowed methylation spreading. In conclusion, we have found that an element located in the p16 promoter is responsible for protection against DNA methylation spreading in normal tissues. The failure of protective cis-elements may be a general feature of tumor-suppressor gene silencing during tumorigenesis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The DNA replication polymerases δ and ϵ have an inherent proofreading mechanism in the form of a 3'→5' exonuclease. Upon recognition of errant deoxynucleotide incorporation into DNA, the nascent primer terminus is partitioned to the exonuclease active site where the incorrectly paired nucleotide is excised before resumption of polymerization. The goal of this project was to identify the cellular and molecular consequences of an exonuclease deficiency. The proofreading capability of model system MEFs with EXOII mutations was abolished without altering polymerase function.^ It was hypothesized that 3'→5' exonucleases of polymerases δ and ϵ are critical for prevention of replication stress and important for sensitization to nucleoside analogs. To test this hypothesis, two aims were formulated: Determine the effect of the exonuclease active site mutation on replication related molecular signaling and identify the molecular consequences of an exonuclease deficiency when replication is challenged with nucleoside analogs.^ Via cell cycle studies it was determined that larger populations of exonuclease deficient cells are in the S-phase. There was an increase in levels of replication proteins, cell population growth and DNA synthesis capacity without alteration in cell cycle progression. These findings led to studies of proteins involved in checkpoint activation and DNA damage sensing. Finally, collective modifications at the level of DNA replication likely affect the strand integrity of DNA at the chromosomal level.^ Gemcitabine, a DNA directed nucleoside analog is a substrate of polymerases δ and ϵ and exploits replication to become incorporated into DNA. Though accumulation of gemcitabine triphosphate was similar in all cell types, incorporation into DNA and rates of DNA synthesis were increased in exonuclease defective cells and were not consistent with clonogenic survival. This led to molecular signaling investigations which demonstrated an increase in S-phase cells and activation of a DNA damage response upon gemcitabine treatment.^ Collectively, these data indicate that the loss of exonuclease results in a replication stress response that is likely required to employ other repair mechanisms to remove unexcised mismatches introduced into DNA during replication. When challenged with nucleoside analogs, this ongoing stress response coupled with repair serves as a resistance mechanism to cell death.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Survivin (BIRC5) is a member of the Inhibitor of Apoptosis (IAP) gene family and functions as a chromosomal passenger protein as well as a mediator of cell survival. Survivin is widely expressed during embryonic development then becomes transcriptionally silent in most highly differentiated adult tissues. It is also overexpressed in virtually every type of tumor. The survivin promoter contains a canonical CpG island that has been described as epigenetically regulated by DNA methylation. We observed that survivin is overexpressed in high grade, poorly differentiated endometrial tumors, and we hypothesized that DNA hypomethylation could explain this expression pattern. Surprisingly, methylation specific PCR and bisulfite pyrosequencing analysis showed that survivin was hypermethylated in endometrial tumors and that this hypermethylation correlated with increased survivin expression. We proposed that methylation could activate survivin expression by inhibit the binding of a transcriptional repressor. ^ The tumor suppressor protein p53 is a well documented transcriptional repressor of survivin and examination of the survivin promoter showed that the p53 binding site contains 3 CpG sites which often become methylated in endometrial tumors. To determine if methylation regulates survivin expression, we treated HCT116 cells with decitabine, a demethylation agent, and observed that survivin transcript and protein levels were significantly repressed following demethylation in a p53 dependent manner. Subsequent binding studies confirmed that DNA methylation inhibited the binding of p53 protein to its binding site in the survivin promoter. ^ We are the first to report this novel mechanism of epigenetic regulation of survivin. We also conducted microarray analysis which showed that many other cancer relevant genes may also be regulated in this manner. While demethylation agents are traditionally thought to inhibit cancer cell growth by reactivating tumor suppressors, our results indicate that an additional important mechanism is to decrease the expression of oncogenes. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ATP-dependent chromatin remodeling has been shown to be critical for transcription and DNA repair. However, the involvement of ATP-dependent chromatin remodeling in DNA replication remains poorly defined. Interestingly, we found that the INO80 chromatin-remodeling complex is directly involved in the DNA damage tolerance pathways activated during DNA replication. DNA damage tolerance is important for genomic stability and is controlled by formation of either mono-ubiquitinated or multi-ubiquitinated PCNA, which respectively induce error prone or error-free replication bypass of the lesions. In addition, homologous recombination (HR) mediated by the Rad51 pathway is also involved in the DNA damage tolerance pathways. ^ We found that INO80 is specifically recruited to replication origins during S phase in a genome-wide fashion. In addition, DNA combing analysis shows INO80 is required for the resumption of replication at stalled forks induced by methyl methane-sulfonate (MMS). Mechanistically, we find that INO80 is required for PCNA ubiquitination as well as for Rad51 mediated processing of replication forks after MMS treatment. Furthermore, chromatin immunoprecipitation at specific ARSs indicates INO80 is necessary for Rad18 and Rad51 recruitment to replication forks after MMS treatment. Moreover, 2D gel analysis shows INO80 is necessary to process Rad51 mediated intermediates at impeded replication forks. ^ In conclusion, our findings establish a novel role of a chromatin-remodeling complex in DNA damage tolerance pathways and suggest that chromatin remodeling is fundamentally important to ensure faithful replication of DNA and genome stability in eukaryotes. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High mobility group protein B1 (HMGB1) is a multifunctional protein with roles in chromatin structure, transcription, V(D)J recombination, and inflammation. HMGB1 also binds to and bends damaged DNA, but the biological consequence of this interaction is not clearly understood. We have shown previously that HMGB1 binds cooperatively with nucleotide excision repair (NER) damage recognition proteins XPA and RPA to triplex-directed psoralen DNA interstrand crosslinks (ICLs). Based on this we hypothesized that HMGB1 is enhancing the repair of DNA lesions, and through this role, is affecting DNA damage-induced mutagenesis and cell survival. Because HMGB1 is also a chromatin protein, we further hypothesized that it is acting to facilitate chromatin remodeling at the site of the DNA damage, to allow access of the repair machinery to the DNA lesion. We demonstrated here that HMGB1 could bind to triplex-directed psoralen ICLs in a complex with NER proteins XPC-RAD23B, XPA and RPA, which occurred in the presence or absence of DNA. Supporting these findings, we demonstrated that HMGB1 enhanced repair of triplex-directed psoralen ICLs (by nucleotide incorporation), as well as removal of UVC irradiation-induced DNA lesions from the genome (by radioimmunoassay). We also explored HMGB1's role in chromatin remodeling upon DNA damage. Immunoblotting demonstrated that, in contrast to HMGB1 proficient cells, cells lacking HMGB1 showed no increase in histone acetylation after UVC irradiation. Additionally, purified HMGB1 protein enhanced chromatin formation in an in vitro chromatin assembly system. However, HMGB1 also has a role in DNA repair in the absence of chromatin, as shown by measuring UVC-induced nucleotide incorporation on a naked substrate. Upon exploration of HMGB1's effect on several cellular outcomes of DNA damage, we found that mammalian cells lacking HMGB1 were hypersensitive to DNA damage induced by psoralen plus UVA irradiation or UVC radiation, showing less survival and increased mutagenesis. These results reveal a new role for HMGB1 in the error-free repair of DNA lesions in a chromosomal context. As strategies targeting HMGB1 are currently in development for treatment of sepsis and rheumatoid arthritis, our findings draw attention to potential adverse side effects of anti-HMGB1 therapy in patients with inflammatory diseases. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The E2F1 transcription factor is a well-known regulator of cell proliferation and apoptosis, but its role in the DNA damage response is less clear. It has been shown that E2F1 becomes stabilized in response to DNA double strand breaks (DSBs) and accumulates at sites of DSBs. This process requires ATM kinase and serine 31 phosphorylation, which provides a binding site for TopBp1. However, the role of E2F1 at sites of DNA damage is not clear. We expanded the study of E2F1's role in the DNA damage response by exploring its functions in ultraviolet (UV) induced DNA damage, and identified that E2F1 promotes DNA repair and cell survival. To further investigate the mechanisms underlying our findings, we examined the possibility for direct involvement of E2F1 in DNA repair. We found that E2F1 localizes to sites of UV irradiation-induced DNA damage dependent on the ATR kinase and serine 31 of E2F1. E2F1 also associates with the GCN5 histone acetyltransferase in response to UV irradiation and recruits GCN5 to sites of DNA damage. This correlates with an increase in histone H3 lysine 9 (H3K9) acetylation and chromatin relaxation. In the absence of E2F1 or GCN5, nucleotide excision repair (NER) proteins do not efficiently localize to sites of UV damage and DNA repair is impaired. E2F1 mutants unable to bind DNA or activate transcription retain the ability to stimulate NER. These findings demonstrate a non-transcriptional role for E2F1 in DNA repair involving GCN5-mediated H3K9 acetylation and increased accessibility to the NER machinery. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this dissertation were to determine the quality of life in women with ovarian cancer and the association of their physical and emotional well-being with the number of symptoms, duration of symptoms, and the scores of common symptoms of ovarian cancer; to study the prevalence of complementary and alternative medicine techniques for symptom relief and its association with the number of symptoms, age, education, insurance, comorbidity, and satisfaction with medical care they received, and their pre-diagnostic experience of symptoms.^ This study was based on a secondary data analysis of a study of early detection of ovarian cancer. A sample of 139 women with ovarian cancer was recruited and was administered a questionnaire comprised of questions on their quality of life, their symptoms and what they did about the symptoms, whether they used any complementary and alternative medicine techniques, and other medical conditions they had. Out of this sample, 53 patients underwent in-depth interviews relating to their symptoms before the diagnosis and their experiences with the health care system leading to the ovarian cancer diagnosis. ^ In article #1, ovarian cancer patients were observed to have significantly poorer quality of life on all subscales and summary scores except pain, compared to that of the general population of US women. Physical well-being scores were negatively associated with the number of symptoms before diagnosis and a significant negative association of comorbidity index was observed with physical well-being. Higher education and increase in time since diagnosis was found to have better physical scores. Emotional well-being scores showed marginally significant associations with number of symptoms and bloating. ^ In article #2, a thematic content analysis of the ovarian cancer patients’ interviews revealed that on recognition of their symptoms women first assumed their symptoms to be a normal transient occurrence due to a pre-existing disease condition, or due to some other disease. A series of misattributions of their symptoms on their and their doctors’ part impacted their health care seeking.In article #3, a significantly greater likelihood of CAM use with an increase in the number of symptoms was observed.^ Based on the foregoing results, it is important to educate women on possible signs of ovarian cancer and also to educate doctors about the results of current research regarding ovarian cancer diagnosis. This will help to avoid a delay in getting a diagnosis and improve women’s quality of life. It emphasizes the diagnosis of ovarian cancer in earlier stages by more sensitive screening techniques. This study emphasizes the importance of consideration of comorbidity in any quality of life research. Additionally, educating women in the safe use of CAM techniques carries immense significance because the efficacy and safety of many of the currently advertized CAM products has not been scientifically validated. Further research is needed to confirm the findings of this study. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA ligase and DNA polymerase play important roles in DNA replication, repair, and recombination. Frequencies of spontaneous and chemical- and physical-induced mutations are correlated to the fidelity of DNA replication. This dissertation elucidates the mechanisms of the DNA ligation reaction by DNA ligases and demonstrates that human DNA ligase I and DNA polymerase $\alpha$ are the molecular targets for two metal ions, Zn$\sp{2+}$ and Cd$\sp{2+},$ and an anticancer drug, F-ara-ATP.^ Human DNA ligases were purified to homogeneity and their AMP binding domains were mapped. Although their AMP-binding domains are similar, there could be difference between the two ligases in their DNA binding domains.^ The formation of the AMP-DNA intermediate and the successive ligation reaction by human DNA ligases were analyzed. Both reactions showed their substrate specificity for ligases I and II, required Mg2+, and were inhibited by ATP.^ A protein inhibitor from HeLa cells and specific for human DNA ligase I but not ligase II and T4 ligase was discovered. It reversibly inhibited DNA ligation activity but not the AMP-binding activity due to the formation of a reversible ligase I-inhibitor complex.^ F-ara-ATP inhibited human DNA ligase I activity by competing with ATP for the AMP-binding site of DNA ligase I, forming a ligase I-F-ara-AMP complex, as well as when it was incorporated at 3$\sp\prime$-terminus of DNA nick by DNA polymerase $\alpha.$^ All steps of the DNA ligation reaction were inhibited by Zn$\sp{2+}$ and Cd$\sp{2+}$ in a concentration-dependent manner. Both ions did not show the ability to change the fidelity of DNA ligation reaction catalyzed by human DNA ligase I. However, Zn$\sp{2+}$ and Cd$\sp{2+}$ showed their contradictory effects on the fidelity of the reaction by human DNA polymerase $\alpha.$ Zn$\sp{2+}$ decreased the frequency of misinsertion but less affected that of mispair extension. On the contrary, Cd$\sp{2+}$ increased the frequencies of both misinsertion and mispair extension at very low concentration. Our data provided strong evidence in the molecular mechanisms for the mutagenicity of zinc and cadmium, and were comparable with the results previously reported. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation examines the biological functions and the regulation of expression of DNA ligase I by studying its expression under different conditions.^ The gene expression of DNA ligase I was induced two- to four-fold in S-phase lymphoblastoid cells but was decreased to 15% of control after administration of a DNA damaging agent, 4-nitroquinoline-1-oxide. When cells were induced into differentiation, the expression level of DNA ligase I was decreased to less than 15% of that of the control cells. When the gene of DNA ligase I was examined for tissue specific expression in adult rats, high levels of DNA ligase I mRNA were observed in testis (8-fold), intermediate levels in ovary and brain (4-fold), and low levels were found in intestine, spleen, and liver (1- to 2-fold).^ In confluent cells of normal skin fibroblasts, UV irradiation induced the gene expression of DNA ligase I at 24 and 48 h. The induction of DNA ligase I gene expression requires active p53 protein. Introducing a vector containing the wild type p53 protein in the cells caused an induction of the DNA ligase I protein 24 h after the treatment.^ Our results indicate that, in addition to the regulation by phosphorylation/dephosphorylation, cellular DNA ligase I activity can be regulated at the gene transcription level, and the p53 tumor suppresser is one of the transcription factors for the DNA ligase I gene. Also, our results suggest that DNA ligase I is involved in DNA repair as well as in DNA replication.^ Also, as an early attempt to clone the human homolog of the yeast CDC9 gene which has been shown to be involved in DNA replication, DNA repair, and DNA recombination, we have identified a human gene with mRNA of 1.7 kb. This dissertation studies the gene regulation and the possible biological functions of this new human gene by examining its expression at different stages of the cell cycle, during cell differentiation, and in cellular response to DNA damage.^ The new gene that we recently identified from human cells is highly expressed in brain and reproductive organs (BRE). This BRE gene encodes an mRNA of 1.7-1.9 kb, with an open reading frame of 1,149 bp, and gives rise to a deduced polypeptide of 383 amino acid residues. No extensive homology was found between BRE and sequences from the EMBL-Gene Banks. BRE showed tissue-specific expression in adult rats. The steady state mRNA levels were high in testis (5-6 fold), ovary and brain (3-4 fold) compared to the spleen level, but low in intestine and liver (1-2 fold). The expression of this gene is responsive to DNA damage and/or retinoic acid (RA) treatment. Treatment of fibroblast cells with UV irradiation and 4-nitroquinoline-1-oxide caused more than 90% and 50% decreases in BRE mRNA, respectively. Similar decreases in BRE expression were observed after treatment of the brain glioma cell line U-251 and the promyelocytic cell line HL-60 with retinoic acid. (Abstract shortened by UMI). ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A clone of the primary Eco R1 family of human DNA sequences has been used as an indicator sequence for detecting alterations induced by a toxic agent. Specific clones of this family have been examined and compared to the consensus sequence to determine the normal variability of this family. Though variations were observed, data indicated that such clones can be used to study induced DNA modifications. This DNA was exposed to the toxic agent dimethyl sulfate under various conditions and a distinct pattern of aberrations was shown to occur. It is suggested that this approach be used to characterize patterns of damage induced by various agents in the ultimate development of a system capable of monitoring human genotoxic exposure. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of circadian variation on susceptibility to the chemical induction of cancer was assessed utilizing the mouse pulmonary adenoma bioassay. Different groups of male A/Jax mice (standardized for rhythm analysis with light from 0600-1800 and darkness from 1800-0600) each received a single timed i.p. injection of urethan (Bioassay I: 0.25, 0.5 or 1.0 mg/g body weight; Bioassay II: 0.75, 1.0, 1.25 mg/g body weight; Bioassay III: 1.0 mg/g body weight) at the following times, 0100, 0500, 0900, 1300, 1700 or 2100. Mice were sacrificed 16 weeks after treatment. The tumorigenic effect of urethan on the lungs (lung surface pulmonary adenomas) was assessed. In addition, mortality, body weight changes and the anesthetic effect of urethan were determined. The rhythmic pattern of DNA synthesis in the lung and the comparative rhythmic pattern in the liver were assessed using a tritiated thymidine incorporation assay.^ In the first adenoma bioassay, the lung tumorigenic response in mice given the highest dose of urethan exhibited a 12-hour rhythm with a major peak in tumor yield at 0100 and a secondary peak at 1300; reduced yields occurred at 0500-0900 and 2100. The second adenoma bioassay, studied at a 6-month seasonal divergence in time from the first study showed a peak at 1300 but not at 0100. The mice from the third adenoma bioassay, studied at an 11-month seasonal divergence in time from the 2nd study showed an increase in tumor yield during the rest cycle (0900-1700).^ This study found a definite suggestion of a low amplitude rhythm in susceptibility to urethan induced effects. The acute toxic and pharmacological effects correlated to exhibit a maximal effect during dark hours (activity span). This rhythmicity might be explained by an alteration in the amplitude of hepatic metabolism. The chronic carcinogenic response exhibited an opposite pattern. Urethan induced tumor response was greater during daylight hours (rest cycle). This correlated with the slight elevation in DNA synthetic activity found in the lung and liver which might be responsible for the increase in carcinogenic response. (Abstract shortened with permission of author.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inability to maintain genomic stability and control proliferation are hallmarks of many cancers, which become exacerbated in the presence of unrepaired DNA damage. Such genotoxic stresses trigger the p53 tumor suppressor network to activate transient cell cycle arrest allowing for DNA repair; if the damage is excessive or irreparable, apoptosis or cellular senescence is triggered. One of the major DNA repair pathway that mends DNA double strand breaks is non-homologous end joining (NHEJ). Abrogating the NHEJ pathway leads to an accumulation of DNA damage in the lymphoid system that triggers p53-mediated apoptosis; complete deletion of p53 in this system leads to aggressive lymphomagenesis. Therefore, to study the effect of p53-dependent cell cycle arrest, we utilized a hypomorphic, separation-of-function mutant, p53p/p, which completely abrogates apoptosis yet retains partial cell cycle arrest ability. We crossed DNA ligase IV deficiency, a downstream ligase crucial in mending breaks during NHEJ, into the p53p/p background (Lig4-/-p53p/p). The accumulation of DNA damage activated the p53/p21 axis to trigger cellular senescence in developing lymphoid cells, which absolutely suppressed tumorigenesis. Interestingly, these mice progressively succumb to severe diabetes. Mechanistic analysis revealed that spontaneous DNA damage accumulated in the pancreatic b-cells, a unique subset of endocrine cells solely responsible for insulin production to regulate glucose homeostasis. The genesis of adult b-cells predominantly occurs through self-replication, therefore modulating cellular proliferation is an essential component for renewal. The progressive accumulation of DNA damage, caused by Lig4-/-, activated p53/p21-dependent cellular senescence in mutant pancreatic b-cells that lead to islet involution. Insulin levels subsequently decreased, deregulating glucose homeostasis driving overt diabetes. Our Lig4-/-p53p/p model aptly depicts the dichotomous role of cellular senescence—in the lymphoid system prevents tumorigenesis yet in the endocrine system leads to the decrease of insulin-producing cells causing diabetes. To further delineate the function of NHEJ in pancreatic b-cells, we analyzed mice deficient in another component of the NHEJ pathway, Ku70. Although most notable for its role in DNA damage recognition and repair within the NHEJ pathway, Ku70 has NHEJ-independent functions in telomere maintenance, apoptosis, and transcriptional regulation/repression. To our surprise, Ku70-/-p53p/p mutant mice displayed a stark increase in b-cell proliferation, resulting in islet expansion, heightened insulin levels and hypoglycemia. Augmented b-cell proliferation was accompanied with the stabilization of the canonical Wnt pathway, responsible for this phenotype. Interestingly, the progressive onset of cellular senescence prevented islet tumorigenesis. This study highlights Ku70 as an important modulator in not only maintaining genomic stability through NHEJ-dependent functions, but also reveals a novel NHEJ-independent function through regulation of pancreatic b-cell proliferation. Taken in aggregate, these studies underscore the importance for NHEJ to maintain genomic stability in b-cells as well as introduces a novel regulator for pancreatic b-cell proliferation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of DNA cytosine methylation on H-ras promoter activity was assessed using a transient expression system employing the plasmid H-rasCAT (NaeI H-ras promoter linked to the chloramphenicol acetyltransferase (CAT) gene). This 551 bp promoter is 80% GC rich, enriched with 168 CpG dinucleotides, and contains six functional GC box elements which represent major DNA methylation target sites. Prokaryotic methyltransferases HhaI (CGm$\sp5$CG) and HpaII (Cm$\sp5$CGG) alone or in combination with a human placental methyltransferase (HP MTase) were used to introduce methyl groups at different CpG sites within the promoter. To test for functional promoter activity, the methylated plasmids were introduced into CV-1 cells and CAT activity assessed 48 h post-transfection. Methylation at specific HhaI and HpaII sites reduced CAT expression by 70%, whereas more extensive methylation at generalized CpG sites with HP MTase inactivated the promoter $>$95%. The inhibition of H-ras promoter activity was not attributable to methylation-induced differences in DNA uptake or stability in the cell, topological form of the plasmid, or methylation effects in nonpromoter regions. We also observed that DNA cytosine methylation of a 360 bp promoter fragment by HP MTase induced a local change in DNA conformation. Using three independent methodologies (nitrocellulose filter binding assays, gel mobility shifts, and Southwestern blots), we determined that this change in promoter conformation affected the interaction of nuclear proteins with cis-regulatory sequences residing in the promoter region. The results provide evidence to suggest that DNA methylation may regulate gene expression by inducing changes in local promoter conformation which in turn alters the interactions between DNA and protein factors required for transcription. The results provide supportive evidence for the hypothesis of Cedar and Riggs, who postulated that DNA methylation may regulate gene expression by altering the binding affinities of proteins for DNA. ^