71 resultados para Protein Activation
Resumo:
Heterotrimeric G protein-mediated signal transduction is one of numerous means that cells utilize to respond to external stimuli. G proteins consist of α, β andγ subunits. Extracellular ligands bind to seven-transmembrane helix receptors, triggering conformational changes. This is followed by activation of coupled G proteins through the exchange of GDP for GTP on the Gα subunit. Once activated, Gα-GTP dissociates from the βγ dimer. Both of these two moieties can interact with downstream effectors, such as adenylyl cyclase, phospholipase C, phosphodiesterases, or ion channels, leading to a series of changes in cellular metabolism and physiology. ^ Neurospora crassa is a eukaryotic multicellular filamentous fungus, with asexual/vegetative and sexual phases to its life cycle. Three Gα (GNA-1, GNA-2, GNA-3) and one Gβ (GNB-1) proteins have been identified in this organism. This dissertation investigates GNA-1 and GNB-1 mediated signaling pathways in N. crassa. ^ GNA-1 was the first identified microbial Gα that belongs to a mammalian superfamily (Gαi). Deletion of GNA-1 leads to multiple defects in N. crassa. During the asexual cycle, Δgna-1 strains display a slower growth rate and delayed conidiation on solid medium. In the sexual cycle, the Δgna-1 mutant is male-fertile but female-sterile. Biochemical studies have shown that Δ gna-1 strains have lower adenosine 3′–5 ′ cyclic monophosphate (cAMP) levels than wild type under conditions where phenotypic defects are observed. In this thesis work, strains containing one of two GTPase-deficient gna-1 alleles (gna-1 R178C, gna-1Q204L) leading to constitutive activation of GNA-1 have been constructed and characterized. Activation of GNA-1 causes uncontrolled aerial hyphae proliferation, elevated sensitivity to heat and oxidative stresses, and lower carotenoid synthesis. To further study the function of GNA-1, constructs to enable expression of mammalian Gαi superfamily members were transformed into a Δ gna-1 strain, and complementation of Δgna-1 defects investigated. Gαs, which is not a member of Gα i superfamily was used as a control. These mammalian Gα genes were able to rescue the vegetative growth rate defect of the Δ gna-1 strain in the following order: Gαz > Gα o > Gαs > Gαt > Gαi. In contrast, only Gαo was able to complement the sexual defect of a Δgna-1 strain. With regard to the thermotolerance phenotype, none of the mammalian Gα genes restored the sensitivity to a wild type level. These results suggest that GNA-1 regulates two independent pathways during the vegetative and sexual cycles in N. crassa. ^ GNB-1, a G protein β subunit from N. crassa, was identified and its functions investigated in this thesis work. The sequence of the gnb-1 gene predicts a polypeptide of 358 residues with a molecular mass of 39.7 kDa. GNB-1 exhibits 91% identity to Cryphonectria parasitica CPGB-1, and also displays significant homology with human and Dictyostelium Gβ genes (∼66%). A Δ gnb-1 strain was constructed and shown to exhibit defects in asexual spore germination, vacuole number and size, mass accumulation and female fertility. A novel role for GNB-1 in regulation of GNA-1 and GNA-2 protein levels was also demonstrated. ^
Resumo:
SHP1 is a cytosolic protein tyrosine phosphatase that contains two SH2 domains. It is highly expressed in hematopoietic cells and expressed in normal epithelium at lower levels. While SHP1 in hematopoietic cells is thought to be a negative regulator of cellular signaling by associating with and dephosphorylating various receptors and their downstream effectors after they become activated, its precise function in epithelium remains to be understood. The potential involvement of SHP1 in human tumorigenesis has been hypothesized from the findings that SHP1 can interact with, dephosphorylate, and regulate the activity of several protein tyrosine kinases (PTKs) implicated in human cancer. These PTKs include epidermal growth factor receptor (EGFR) and Src. Such speculation is also supported by the report that SHP1 is overexpressed in human ovarian cancers. ^ Here we report, for the first time, that the levels of SHP1 expression and activity are altered in human breast cancer cells in comparison with normal breast epithelium. In particular, SHP1 expression is nearly lost in the breast cancer cell lines MDA-MB231 and MDA-MB435. After the re-introduction of SHP1 both in wild type (wt) and enzymatically inactive (dn) forms, into the MDA-MB231 cells, we observed no changes in cellular proliferation. However, the overexpression of wt SHP1 led to increased anchorage-independent growth in the MDA-MB231 cells. SHP1 phosphatase activity is essential for such an increase since the overexpression of dn SHP1 had no effect. Enhanced turnorigenicity in nude mice was also observed in the MDA-MB231 cells overexpressing wt SHP1, but not dn SHP1, suggesting the crucial function of SHP1 enzymatic activity in this process. Our observations in this study indicate that SHP1 promotes tumorigenesis by a mechanism or mechanisms apart from enchancing angiogenesis. In addition, we have found no evidence that the overexpression of SHP1 could affect metastatic potential in the MDA-MB231 cells. ^ In the MDA-MB231 cells stably transfected with either wt or dn SHP1 the peak level of EGFR tyrosine phosphorylation induced by EGF, as well as the sensitivity to EGF stimulation, was not altered. However, the overexpression of wt SHP1 led to a slight increase in the kinetics of EGFR dephosphorylation, whereas the overexpression of dn SHP1 led to slightly delayed kinetics of EGFR dephosphorylation. The overexpression of either the wt or dn SHP1 did not lead to any significant increase in Src kinase activity. ^ In NIH3T3 cells, the transient overexpression of SHP1 led to no significant changes in MAP kinase (ERK2) activation by EGF or Akt activation by PDGF. In 3T3H4 cells, the transient overexpression of SHP1 led to no significant changes in MAP kinase (ERK2) activation by heregulin. The transient overexpression of wt SHP1 in the MDA-MB231 cells caused an apparent increase, ranging from 10% to 20%, in the G0/G1 population of the cells with a corresponding decrease in the S phase population. ^ In order to understand the mechanisms by which SHP1 exerts its positive effect on the tumorigenic potential of the MDA-MB231 cells, we employed two-dimensional electrophoresis in an attempt to identify cellular protein(s) with significantly altered tyrosine phosphorylation level upon wt SHP1 overexpression. The overexpression of wt SHP1 but not dn SHP1, leads increased tyrosine phosphorylation of a protein with a molecular weight of approximately 40 kDa and a pI between 5.9 to 6.6. ^
Resumo:
A newly described subset of monocytes has been identified in peritoneal exudate cells (PEC) from the malignant ascites of patients with ovarian cancer. These cells were characterized by the production of IL-10 and TGF-β2, but not IL-12, IL-1α, or TNF-α, and expressed CD14, CD16, and CD54, but not HLA-DR, CD80, CD86, CD11a, CD11b, or CD25 cell surface antigens. Since this subset of monocytes could affect the modulation of tumor immune responses in vivo, studies were undertaken to determine their effect on the activation and proliferation of autologous T-cells from the peritoneal cavity of patients with ovarian carcinoma. Cytokine transcripts, including IL-2, GM-CSF, and IFN-γ were detected in T-cells isolated from patient specimens that also contained the IL-10 producing monocytes, although the IFN-γ and IL-2 proteins could not be detected in T-cells co-incubated with the IL-10 producing monocytes in vitro. Additionally, IL-10 producing monocytes co-cultured with autologous T-cells inhibited the proliferation of the T-cells in response to PHA. T-cell proliferation and cytokine protein production could be restored by the addition of neutralizing antibodies to IL-10R and TGF-β to the co-culture system. These results suggested that this subset of monocytes may modulate antitumor immune responses by inhibiting T-cell proliferation and cytokine protein production. Further studies determined that the precursors to the inhibitory monocytes were tumor-associated and only present in the peripheral blood of patients with ovarian cancer and not present in the peripheral blood of healthy donors. These precursors could be induced to the suppressor phenotype by the addition of IL-2 and GM-CSF, two cytokines detected in the peritoneal cavity of ovarian cancer patients. Lastly, it was shown that the suppressor monocytes from the peritoneal cavity of ovarian cancer patients could be differentiated to a non-inhibitory phenotype by the addition of TNF-α and IFN-γ to the culture system. The differentiated monocytes did not produce IL-10, expressed the activation antigens HLA-DR, CD80, and CD86, and were able to stimulate autologous T-cells in vitro. Since a concomitant reduction in immune function is associated with tumor growth and progression, the effects of these monocytes are of considerable importance in the context of tumor immunotherapy. ^
Resumo:
The Two State model describes how drugs activate receptors by inducing or supporting a conformational change in the receptor from “off” to “on”. The beta 2 adrenergic receptor system is the model system which was used to formalize the concept of two states, and the mechanism of hormone agonist stimulation of this receptor is similar to ligand activation of other seven transmembrane receptors. Hormone binding to beta 2 adrenergic receptors stimulates the intracellular production of cyclic adenosine monophosphate (cAMP), which is mediated through the stimulatory guanyl nucleotide binding protein (Gs) interacting with the membrane bound enzyme adenylylcyclase (AC). ^ The effects of cAMP include protein phosphorylation, metabolic regulation and transcriptional regulation. The beta 2 adrenergic receptor system is the most well known of its family of G protein coupled receptors. Ligands have been scrutinized extensively in search of more effective therapeutic agents at this receptor as well as for insight into the biochemical mechanism of receptor activation. Hormone binding to receptor is thought to induce a conformational change in the receptor that increases its affinity for inactive Gs, catalyzes the release of GDP and subsequent binding of GTP and activation of Gs. ^ However, some beta 2 ligands are more efficient at this transformation than others, and the underlying mechanism for this drug specificity is not fully understood. The central problem in pharmacology is the characterization of drugs in their effect on physiological systems, and consequently, the search for a rational scale of drug effectiveness has been the effort of many investigators, which continues to the present time as models are proposed, tested and modified. ^ The major results of this thesis show that for many b2 -adrenergic ligands, the Two State model is quite adequate to explain their activity, but dobutamine (+/−3,4-dihydroxy-N-[3-(4-hydroxyphenyl)-1-methylpropyl]- b -phenethylamine) fails to conform to the predictions of the Two State model. It is a weak partial agonist, but it forms a large amount of high affinity complexes, and these complexes are formed at low concentrations much better than at higher concentrations. Finally, dobutamine causes the beta 2 adrenergic receptor to form high affinity complexes at a much faster rate than can be accounted for by its low efficiency activating AC. Because the Two State model fails to predict the activity of dobutamine in three different ways, it has been disproven in its strictest form. ^
Resumo:
TNF-α is a pleiotropic cytokine involved in normal homeostasis and plays a key role in defending the host from infection and malignancy. However when deregulated, TNF-α can lead to various disease states. Therefore, understanding the mechanisms by which TNF-α is regulated may aid in its control. In spite of the knowledge gained regarding the transcriptional regulation of TNF-α further characterization of specific TNF-α promoter elements remains to be elucidated. In particular, the T&barbelow;NF-α A&barbelow;P-1/C&barbelow;RE-like (TAC) element of the TNF-α promoter has been shown to be important in the regulation of TNF-α in lymphocytes. Activating transcription factor-2 (ATF-2) and c-Jun were shown to bind to and transactivate the TAC element However, the role of TAC and transcription factors ATF-2 and c-Jun in the regulation of TNF-α in monocytes is not as well characterized. Lipopolysaccharide (LPS), a potent activator of TNF-α in monocytes, provides a good model to study the involvement of TAC in TNF-α regulation. On the other hand, all-tram retinoic acid (ATRA), a physiological monocyte-differentiation agent, is unable to induce TNF-α protein release. ^ To delineate the functional role of TAC, we transfected the wildtype or the TAC deleted TNF-α promoter-CAT construct into THP-1 promonocytic cells before stimulating them with LPS. CAT activity was induced 17-fold with the wildtype TNF-α promoter, whereas the CAT activity was uninducible when the TAC deletion mutant was used. This daft suggests that TAC is vital for LPS to activate the TNF-α promoter. Electrophoretic mobility shift assays using the TAC element as a probe showed a unique pattern for LPS-activated cells: the disappearance of the upper band of a doublet seen in untreated and ATRA treated cells. Supershift analysis identified c-Jun and ATF-2 as components of the LPS-stimulated binding complex. Transient transfection studies using dominant negative mutants of JNK, c-Jun, or ATF-2 suggest that these proteins we important for LPS to activate the TNF-α promoter. Furthermore, an increase in phosphorylated or activated c-Jun was bound to the TAC element in LPS-stimulated cells. Increased c-Jun activation was correlated with increased activity of Jun N-terminal kinase (JNK), a known upstream stimulator of c-Jun and ATF-2, in LPS-stimulated monocytes. On the other hand, ATRA did not induce TNF-α protein release nor changes in the phosphorylation of c-Jun or JNK activity, suggesting that pathways leading to ATRA differentiation of monocytic cells are independent of TNF-α activation. Together, the induction of TNF-α gene expression seems to require JNK activation, and activated c-Jun binding to the TAC element of the TNF-α promoter in THP-1 promonocytic cells. ^
Resumo:
Matrix metalloproteinase-9 (MMP-9) plays an important role in tumor invasion and angiogenesis. Secretion of MMP-9 has been reported in various cancer types including lung cancer, brain cancer, colon cancer, and breast cancer. Heregulin is a growth factor that regulates growth and differentiation of normal breast cells as well as mammary tumor cells. To study the role of heregulin in breast cancer metastasis, we tested whether heregulin may regulate MMP-9 secretion. By screening a panel of breast cancer cell line for their ability to respond to heregulin and produce MMP-9, we have found that MMP-9 secretion can be induced by heregulin-β1 in two breast cancer cell lines, SKBr3 and MCF-7. In both cell lines, increase of MMP-9 activity as shown by zymography was accompanied by increased protein level as well as mRNA level of MMP-9. Using a reporter luciferase assay, we have identified that proximal −670bp promoter of MMP-9 had similar activity to a 2.2kb MMP-9 promoter in response to heregulin stimulation. Heregulin treatment of SKBr3 and MCF-7 activated multiple signaling pathways inside cells. These include the Erk pathway, the p38 kinase pathway, PKC pathway, and PI-3K pathway. To examine which pathways are involved in MMP-9 activation by heregulin, we have used a panel of chemical inhibitors to specifically inhibit each one of these pathways. Ro-31-8220 (PKC inhibitor) and SB203580 (p38 kinase inhibitor) completely blocked heregulin activation of MMP-9. On the other hand, PD098059 (MEK-1 inhibitor) partially blocked MMP-9 activation, whereas PI-3K inhibitor, wortmannin, had no effect. Therefore, at least three signaling pathways are involved in activation of MMP-9 by heregulin. Since MMP-9 is tightly associated with metastatic potential, our study also suggests that heregulin may enhance breast tumor metastasis through induction of MMP-9 expression. ^
Resumo:
The p53 tumor suppressor gene product is negatively regulated by the product of its downstream target, mdm2. The mdm2 oncogene abrogates p53 transactivation function. Amplification of mdm2 occurs in 36% of human sarcomas, which often retain p53 in wild type form, suggesting that overexpression of mdm2 in tumors results in p53 inactivation. Thus, the relationship of p53 to mdm2 is important in tumorigenesis. The deletion of mdm2 in the mouse results in embryonic lethality by 5.5 days post coitum. Embryonic lethality of the mdm2 null embryos was overcome by simultaneous loss of the p53 tumor suppressor, which substantiates the importance of the negative regulatory function of MDM2 on p53 function in vivo. These data suggest that the loss of MDM2 function allowed the constitutively active p53 protein to induce either a complete G1 arrest or the p53-dependent apoptotic pathway, resulting in the death of the mdm2−/− embryos.^ The present study examines the hypothesis that the absence of mdm2 induces apoptosis due to p53 activation. Viability of the p53−/−mdm2−/− mice has allowed establishment of mouse embryo fibroblasts (MEFs) and a detailed examination of the properties of these cells. To introduce p53 into this system, and essentially recreate a mdm2 null cell, a temperature sensitive p53 (tsp53) point mutant (A135V) was used, which exhibits a nonfunctional, mutant conformation at 39°C and wild type, functional conformation at 32°C. Infected pools of p53−/− and p53−/−mdm2−/− MEFs with the tsp53 gene were established and single-cell clonal populations expressing tsp53 were selected. Shifting the cells from 39°C to 32°C caused p53−/−mdm2 −/− lines expressing tsp53 to undergo up to 80% apoptosis, which did not occur in the p53−/− lines expressing tsp53 nor the parental lines lacking p53 expression. Furthermore, the amount of p53 present in the clonal population determined the extent of apoptosis. Tsp53 is transcriptionally active in this system, however, it discriminates among different target promoters and does not induce the apoptosis effector targets bax or Fas/Apo1. ^ In summary, this study indicates that the presence or absence of mdm2 is the determining factor for the ability of p53 to trigger apoptosis in this system. The loss of mdm2 promotes p53-dependent apoptosis in MEFs in a cell cycle and dose-dependent manner. p53 is differentially phosphorylated in the presence and absence of mdm2, but does not induce the apoptosis effectors, bax or Fas/ Apo1. ^
Resumo:
c-Met is the protein tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF/SF) and mediates several normal cellular functions including proliferation, survival, and migration. Overexpression of c-Met correlates with progression and metastasis of human colorectal carcinoma (CRC). The goals of this study were to determine if overexpression of c-Met directly contributes to tumorigenicity and liver metastatic potential of colon cancer, and what are the critical pathways regulated by c-Met in this process. The studies used two colon tumor cell lines, KM12SM and KM20, which express high levels of constitutively active c-Met and are highly metastatic in nude mice. To examine the effects of c-Met overexpression, subclones of theses lines with reduced c-Met expression were obtained following transfection with a c-Met specific targeting ribozyme. Reduction of c-Met in KM12SM cells abolished liver metastases when cells were injected intrasplenically in an experimental metastasis assay. However, c-Met downregulation in theses clones was unstable. Three stable KM20 clones with a 25–35% reduction in c-Met protein levels but 60–90% reduction in basal c-Met autophosphorylation and kinase activity were obtained. While HGF increased c-Met kinase activity in the clones with reduced c-Met, the activity was less than that observed in parental or control transfected cells. Correlating with the reduction in c-Met kinase activity, subclones with reduced c-Met expression had significantly reduced in vitro growth rates, soft-agar colony forming abilities, and increased apoptosis. HGF/SF treatment did not affect anchorage-dependent growth or soft-agar colony forming abilities. Further, c-Met downregulation significantly impaired the ability of HGF/SF to induce migration. To examine the effects of reduced c-Met on tumor formation, parental and c-Met reduced KM20 cells were grown subcutaneously and intrahepatically in nude mice. c-Met downregulation delayed, but did not abolish growth at the subcutaneous site. When these cells were injected intrahepatically, both tumor incidences and size were significantly reduced. To further understand the molecular basis of c-Met in promoting tumor growth, the activation of several signaling intermediates that have been implicated in c-Met mediated growth, survival and migration were compared between KM20 parental cells and subclones with reduced c-Met expression levels. The expression and activity (as determined by phosphorylation) of AKT and Erk1/2 were unaltered. In contrast, Src kinase activity, as measured by immune complex kinase assay, was reduced 2–5 fold following c-Met downregulation. As Src has been implicated in growth, survival and migration, Src activation in c-Met overexpressing lines is likely contributing to the tumorigenic and metastatic capabilities of colon tumor cell lines that overexpress c-Met. Collectively, these results suggest that c-Met overexpression plays a causal role in the development of CRC liver metastases, and that c-Src and c-Met inhibitors may be of potential therapeutic benefit for late-stage colon cancer. ^
Resumo:
YKL-40 is a secreted glycoprotein that has been reported to be expressed in pathologic conditions of extracellular matrix degradation and angiogenesis, such as rheumatoid arthritis, severe osteoarthritis, primary colorectal cancer, metastatic breast cancer, and recurrent ovarian cancer (Dehn, Hogdall et al. 2003). ^ We have identified YKL-40 as a serum marker for glioblastoma multiforme (GBM) using microarray analysis from samples of GBM. We compared the gene expression profile of 19 gliomas to pooled normal brain tissue using the Incyte 10,000 gene expression array. The most differentially expressed gene in this analysis was YKL-40; it was detected in GBM samples with a range of 3 to 62-fold elevation over normal brain. Western blot analysis of glioma samples for YKL-40 protein levels revealed substantial elevation in approximately 65% of GBMs, and undetectable levels in lower-grade gliomas and normal brain tissue. ELISA analysis on serum samples of glioma patients showed that YKL-40 levels were substantially elevated in many of the GBM patients. Statistical analysis indicated that in patients with glioma, serum YKL-40 levels correlate with tumor grade and potentially tumor burden in GBM. ^ Furthermore, we found that YKL-40 expression by in-situ hybridization on a brain tumor tissue array was limited to GBM's and gliosarcomas (GSA), and that YKL-40 expression was specific to the GBM component of GSA. Additional in-situ hybridization analysis, found it to be regionally associated with tumor vasculature as well as activated AKT expression in both human and mouse GBM's. Correlation of elevated YKL-40 with phospho-AKT was confirmed by Western blot analysis on a series of glioblastoma tumors, and inhibition of PI3 Kinase signaling by addition of LY294002 also decreased secretion of YKL-40 over a 7-day period in U87 glioblastoma cell tine. Lastly, YKL-40 expression was induced in response to serum starvation and altered by interaction with specific extracellular matrix (ECM) modules. In summary, we have identified the first accurate serum marker for high-grade gliomas. Furthermore, our findings indicate that YKL-40 is a highly expressed vascular-related glycoprotein in human GBM tissue and that it is affected by the AKT signaling pathway and interaction with components of brain ECM proteins. ^
Resumo:
Sox9 is a master transcription factor in chondrocyte differentiation. Several lines of evidence suggest that the p38 mitogen-activated protein kinase (MAPK) pathway is involved in chondrocyte differentiation. In the present study, we examined the roles of p38 in the regulation of SOX9 activity and chondrogenesis. ^ COS7 cells were transfected with a SOX9 expression vector and 4x48-p89, a luciferase construction harboring four tandem copies of a SOX9-dependent 48-bp enhancer in Col2a1. Coexpression of MKK6EE, a constitutively active mutant of MKK6, a MAPKK that specifically activates p38, further increased the activity of the SOX9-dependent 48-bp enhancer about 5-fold, and SOX9 protein levels were not increased under these conditions. This increase in enhancer activity was not observed in a mutant enhancer construct harboring mutations that abolish SOX9 binding. These data strongly suggested that activation of the p38 pathway results in increased activity of SOX9. In addition, the increase of the activity of the SOX9-dependent 48-bp enhancer by MKK6EE was also observed in primary chondrocytes, and this increase was abolished by coexpression of a p38 phosphatase, MKP5, and p38 specific inhibitors. Furthermore, treatment of primary chondrocytes with p38 inhibitors decreased the expression of Col2a1, a downstream target of Sox9, without affecting Sox9 RNA levels, further supporting the hypothesis that p38 plays a role in regulating Sox9 activity in chondrocytes. ^ To further study the role of the p38 MAPK pathway in chondrogenesis, we generated transgenic mice that express MKK6EE in chondrocytes under the control of the Col2a1 promoter/intron regulatory sequences. These mice showed a dwarf phenotype characterized by reduced chondrocyte proliferation and a delay in the formation of primary and secondary ossification centers. Histological analysis using in situ hybridization showed reduced expression of Indian hedgehog, PTH/PTHrP receptor, cyclin D1 and increased expression of p21. In addition, consistent with the notion that Sox9 activity was increased in these mice, transgenic mice that express MKK6EE in chondrocytes showed phenotypes similar to those of mice that overexpress SOX9 in chondrocytes. Therefore, our study provides in vivo evidence for the role of p38 in chondrocyte differentiation and suggests that Sox9 is a downstream target of the p38 MAPK pathway. ^
Resumo:
Relaxin is a polypeptide hormone that has diverse effects on reproductive and non-reproductive tissues. Relaxin activates the G-protein coupled receptors, LGR7 and LRG8. Early studies described increased cAMP and protein kinase A activity upon relaxin treatment, but cAMP accumulation alone could not account for all of the relaxin-mediated effects. We utilized the human monocyte cell line THP-1 to study the mechanism of relaxin-stimulated CAMP production. ^ Relaxin treatment in THP-1 cells produces a biphasic time course in cAMP accumulation, where the first peak appears as early as 1–2 minutes with a second peak at 10–20 minutes. Selective inhibitors for phosphoinositide 3-kinase (P13K), such as wortmannin and LY294002, show a dose-dependent inhibition of relaxin-stimulated cAMP accumulation, specific for the second peak of the relaxin time course. Neither the effects of relaxin nor the inhibition of relaxin by LY294002 is mediated by the activity of phosphodiesterases. Furthermore, LY294002 blocks upregulation of vascular endothelial growth factor transcript levels by relaxin. ^ To further delineate relaxin signaling pathways, we searched for downstream targets of PI3K that could activate adenylyl cyclase (AC). Protein kinase C ζ (PKCζ) was a prime candidate because it activates types II and V AC. Chelerythrine chloride (a general PKC inhibitor) inhibits relaxin-induced cAMP production to the same degree as LY294002 (∼40%). Relaxin stimulates PKCζ translocation to the plasma membrane in THP-1, MCF-7, PHM1-31, and MMC cells, as shown by immunocytochemistry. PKCζ translocation is P13K-dependent and independent of cAMP production. Antisense PKCζ oligodeoxynucleotides (PKCζ-ODNs) deplete both PKCζ transcript and protein levels in THP-1 cells. PKCζ-ODNs abolish relaxin-mediated PKCζ translocation and inhibit relaxin stimulation of cAMP by 40%, as compared to mock and random ODN controls. Treatment with LY294002 in the presence of PKCζ-ODNs results in little further inhibition. Taken together, we present a novel role for PI3K and PKCζ in relaxin stimulation of cAMP and provide the first example of the PKCζ regulation of AC in an endogenous system. Furthermore, we have identified higher order complexes of AC isoforms and PKA anchoring proteins in attempts to explain the differential coupling of relaxin to cAMP and PI3K-signaling pathways in various cell types. ^