64 resultados para NFAT isoforms


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deregulation of apoptotic cell death can result in aberrant accumulation of cells and increased tumor incidence. Fas (CD95) and Fas ligand (FasL) are a receptor-ligand pair whose activation induces apoptosis in many cell types. Previously, we demonstrated that low metastatic, Fas+ K1735-P murine melanoma cells spontaneously metastasize to the lung following orthotopic injection into FasL-deficient (gld) mice compared to wild-type (wt) controls. We further demonstrated that the expression of the Fas antagonist soluble Fas (sFas) directly correlates with disease stage in patients with melanoma, breast, and colon cancer. These findings document a role for host-derived FasL, in the control of metastatic disease and suggest a role for tumor-associated sFas in acquiring metastatic potential. To directly test whether FasL expressed on lymphocytes or on lung stromal cells restricts metastasis, bone marrow chimeras were generated between C3H wt and C3H gld mice. Chimeric animals were injected subcutaneously with 5 × 105 K1735-P and the incidence and number of spontaneous lung metastases scored. The data show that wt mice receiving gld marrow had a greater number of lung metastases (median 9.5, range 2–31) than gld mice reconstituted with wt marrow (median 1, range 0–31; p < 0.016). Interestingly, both groups had fewer metastases compared to gld controls (median 18.5, range 0–46) but more than wt controls (median 2, range 0–7). These observations provide the first evidence that both hematopoietic- and nonhematopoietic-host derived FasL, are important in the control of melanoma metastasis to the lung. To directly test whether tumor-associated sFas expression can enhance metastasis, K1735-P cells were transfected with three isoforms of sFas (Exo4Del, Exo6Del, and Exo3, 4, 6Del). RT-PCR and ELISA analysis confirmed the expression of sFas RNA and protein respectively. Following intravenous injection of 5 × 104 cells, sFas transfected cells formed significantly more experimental lung metastases [Exo6Del clone 3 (median 22, range 0–36), Exo6Del clone 7 (median 31, range 4–50), Exo3, 4, 6Del (median 22.5, range 13–48)] compared to vector control cells (median 6.5, range 3–29). Together, these data provide the first evidence that sFas is sufficient to enhance the metastatic potential of Fas+ melanoma cells. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pitx2, a paired-related homeobox gene that is mutated in human Rieger Syndrome, plays a key role in transferring the early asymmetric signals to individual organs. Pitx2 encodes three isoforms, Pitx2a, Pitx2b and Pitx2c. I found that Pitx2c was the Pitx2 isoform for regulating left-right asymmetry in heart, lung and the predominant isoform in guts. Previous studies suggested that the generation of left-right asymmetry within individual organs is an all or none, random event. Phenotypic analysis of various Pitx2 allelic combinations, that encode graded levels of Pitx2c, reveals an organ-intrinsic mechanism for regulating left-right asymmetric morphogenesis based on differential response to Pitx2c levels. The heart needs low Pitx2c levels, while the lungs and duodenum require higher doses of Pitx2c. In addition, the duodenal rotation is under strict control of Pitx2c activity. Left-right asymmetry development for aortic arch arteries involves complex vascular remodeling. Left-sided expression of Pitx2c in these developing vessels implied its potential function in this process. In order to determine if Pitx2c also can regulate the left-right asymmetry of the aortic arch arteries, a Pitx2c-specific loss of function mutation is generated. Although in wild type mice, the direction of the aortic arch is always oriented toward the left side, the directions of the aortic arches in the mutants were randomized, showing that Pitx2c also determined the left-right asymmetry of these vessels. I have further showed that the cardiac neural crest wasn't involved in this vascular remodeling process. In addition, all mutant embryos had Double Outlet Right Ventricle (DORV), a common congenital heart disease. This study provided insight into the mechanism of Pitx2c-mediated late stages of left-right asymmetry development and identified the roles of Pitx2c in regulation of aortic arch remodeling and heart development. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-Hodgkin's Lymphomas (NHL) are a group (>30) of important human lymphoid cancers that unlike other tumors today, are showing a marked increase in incidence. The lack of insight to the pathogenesis of B-cell NHL poses a significant problem in the early detection and effective treatment of these malignancies. This study shows that large B-cell lymphoma (LBCL) cells, the most common type of B-cell NHL (account for more than 30% of cases), have developed a novel mechanism for autonomous neoplastic B cell growth. We have identified that the key transcription factor NF-κB, is constitutively activated in LBCL cell lines and primary biopsy-derived LBCL cells, suggesting that they are autonomously activated, and do not require accessory T-cell signaling for cell growth and survival. Further studies have indicated that LBCL cells ectopically express an important T-cell associated co-mitogenic factor, CD154 (CD40 ligand), that is able to internally activate the CD401NF-κB pathway, through constitutive binding to its cognate receptor, CD40, on the lymphoma cell surface. CD40 activation triggers the formation of a “Signalosome” comprising virtually the entire canonical CD40/NF-κB signaling pathway that is anchored by CD40 in plasma membrane lipid rafts. The CD40 Signalosome is vulnerable to interdiction by antibody against CD40 that disrupts the Signalosome and induces cell death in the malignant cells. In addition to constitutive NF-κB activation, we have found that the nuclear factor of activated T cells (NFAT) transcription factor is also constitutively activated in LBCL cells. We have demonstrated that the constitutively active NFATc1 and c-rel members of the NFAT and NF-κB families of transcription factors, respectively, interact with each other, bind to the CD154 promoter, and synergistically activate CD154 gene transcription. Down-regulation of NFATc1 and c-rel with small interfering RNA inhibits CD154 gene transcription and lymphoma cell growth. Our findings suggest that continuous CD40 activation not only provides dysregulated proliferative stimuli for lymphoma cell growth and extended tumor cell survival, but also allows continuous regeneration of the CD40 ligand in the lymphoma cell and thereby recharges the system through a positive feedback mechanism. Targeting the CD40/NF-κB signaling pathway could provide potential therapeutic modalities for LBCL cells in the future. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relaxin is a polypeptide hormone that has diverse effects on reproductive and non-reproductive tissues. Relaxin activates the G-protein coupled receptors, LGR7 and LRG8. Early studies described increased cAMP and protein kinase A activity upon relaxin treatment, but cAMP accumulation alone could not account for all of the relaxin-mediated effects. We utilized the human monocyte cell line THP-1 to study the mechanism of relaxin-stimulated CAMP production. ^ Relaxin treatment in THP-1 cells produces a biphasic time course in cAMP accumulation, where the first peak appears as early as 1–2 minutes with a second peak at 10–20 minutes. Selective inhibitors for phosphoinositide 3-kinase (P13K), such as wortmannin and LY294002, show a dose-dependent inhibition of relaxin-stimulated cAMP accumulation, specific for the second peak of the relaxin time course. Neither the effects of relaxin nor the inhibition of relaxin by LY294002 is mediated by the activity of phosphodiesterases. Furthermore, LY294002 blocks upregulation of vascular endothelial growth factor transcript levels by relaxin. ^ To further delineate relaxin signaling pathways, we searched for downstream targets of PI3K that could activate adenylyl cyclase (AC). Protein kinase C ζ (PKCζ) was a prime candidate because it activates types II and V AC. Chelerythrine chloride (a general PKC inhibitor) inhibits relaxin-induced cAMP production to the same degree as LY294002 (∼40%). Relaxin stimulates PKCζ translocation to the plasma membrane in THP-1, MCF-7, PHM1-31, and MMC cells, as shown by immunocytochemistry. PKCζ translocation is P13K-dependent and independent of cAMP production. Antisense PKCζ oligodeoxynucleotides (PKCζ-ODNs) deplete both PKCζ transcript and protein levels in THP-1 cells. PKCζ-ODNs abolish relaxin-mediated PKCζ translocation and inhibit relaxin stimulation of cAMP by 40%, as compared to mock and random ODN controls. Treatment with LY294002 in the presence of PKCζ-ODNs results in little further inhibition. Taken together, we present a novel role for PI3K and PKCζ in relaxin stimulation of cAMP and provide the first example of the PKCζ regulation of AC in an endogenous system. Furthermore, we have identified higher order complexes of AC isoforms and PKA anchoring proteins in attempts to explain the differential coupling of relaxin to cAMP and PI3K-signaling pathways in various cell types. ^