82 resultados para Binding Sites
Resumo:
B-lymphocyte stimulator (BLyS also called BAFF), is a potent cell survival factor expressed in many hematopoietic cells. BLyS levels are elevated in the serum of non-Hodgkin lymphoma (NHL) patients, and have been reported to be associated with disease progression, and prognosis. To understand the mechanisms involved in BLyS gene expression and regulation, we examined expression, function, and regulation of the BLyS gene in B cell non-Hodgkin's lymphoma (NHL-B) cells. BLyS is constitutively expressed in aggressive NHL-B cells including large B cell lymphoma (LBCL) and mantle cell lymphoma (MCL) contributing to survival and proliferation of malignant B cells. Two important transcription factors, NF-κB and NFAT, were found to be involved in regulating BLyS expression through at least one NF-κB and two NFAT binding sites in the BLyS promoter. Further study indicates that the constitutive activation of NF-κB and BLyS in NHL-B cells forms a positive feedback loop contributing to cell survival and proliferation. In order to further investigate BLyS signaling pathway, we studied the function of BAFF-R, a major BLyS receptor, on B cells survival and proliferation. Initial study revealed that BAFF-R was also found in the nucleus, in addition to its presence on plasma membrane of B cells. Nuclear presentation of BAFF-R can be increased by anti-IgM and soluble BLyS treatment in normal peripheral B lymphocytes. Inhibition of BLyS expression decreases nuclear BAFF-R level in LBCL cells. Furthermore, we showed that BAFF-R translocated to nucleus through the classic karyopherin pathway. A candidate nuclear localization sequence (NLS) was identified in the BAFF-R protein sequence and mutation of this putative NLS can block BAFF-R entering nucleus and LBCL cell proliferation. Further study showed that BAFF-R co-localized with NF-κB family member, c-rel in the nucleus. We also found BAFF-R mediated transcriptional activity, which could be increased by c-rel. We also found that nuclear BAFF-R could bind to the NF-κB binding site on the promoters of NF-κB target genes such as BLyS, CD154, Bcl-xL, Bfl-1/A1 and IL-8. These findings indicate that BAFF-R may also promote survival and proliferation of normal B cells and NHL-B cells by directly functioning as a transcriptional co-factor with NF-κB family member. ^
Resumo:
Adenylyl cyclase (AC) converts ATP into cAMP, which activates protein kinase A (PKA). Activation of PKA leads to the phosphorylation of specific substrates. The mechanism of specificity of PKA phosphorylation baffled researchers for many years. The discovery of A Kinase Anchoring Proteins (AKAPs) has helped to unravel this mystery. AKAPs function to target PKA to specific regions within the cell. They also anchor other enzymes, receptors, or channels leading to tightly regulated signaling modules. Several studies have suggested an important role for activated PKA in these complexes, including the AKAPs yotiao and muscle AKAP (mAKAP). Yotiao, a plasma membrane AKAP, anchors PP1, NMDA receptors, IP3 receptors, and heart potassium channel subunit KCNQI. PKA phosphorylation of NMDA receptors as well as KCNQI leads to increased channel activity. Patients with mutations in KCNQI or yotiao that cause loss of targeting of KCNQI develop long QT syndrome, which can be fatal. mAKAP anchors several CAMP/PKA-regulated pathways to the nuclear envelope in cardiac myocytes. The necessity of activated PKA in these complexes led to the hypothesis that AC is also anchored. The results indicate that AC does associate with yotiao in brain and heart, specifically with AC types I-III, and IX. Co-expression of AC II or III with yotiao leads to inhibition of each isoform's activity. Binding assays revealed that yotiao binds to the N-terminus of AC II and that this region can reverse the inhibition of AC II, but not AC III, indicating unique binding sites on yotiao. AC II binds directly to as 808-957 of yotiao. Y808-957 acts as a dominant negative as the addition of it to rat brain membranes results in a ∼40% increase in AC activity. Additionally, AC was also found to associate with mAKAP in heart, specifically with AC types II and V. The binding site of AC was mapped to 275-340 of mAKAP, while mAKAP binds to the soluble domains of AC V as a complex. These results indicate that interactions between AC and AKAPs are specific and that AC plays an important role in AKAP-targeted signaling. ^
Resumo:
The social amoeba, Dictyostelium discoideum, undergoes a remarkable starvation-induced program of development that transforms a population of unicellular amoebae into a fruiting body composed of resistant spores suspended on a stalk. During this development, secreted cAMP drives chemotaxis of the amoebae, leading to their aggregation, and subsequent differentiation and morphogenesis. Four sequentially expressed G protein-coupled receptors (GPCRs) for cAMP play critical roles in this process. The first of these, cAR1, is essential for aggregation as it mediates chemotaxis as well as the propagation of secreted cAMP waves throughout aggregating populations. Ligand-induced internalization has been shown to regulate a variety of GPCRs. However, little was known at the outset of this study about the role of internalization in the regulation of cAR1 function or, for that matter, in developmental systems in general. For this study, cAMP-induced cAR1 internalization was assessed by measuring (1) the reduction of cell surface binding sites for [ 3H]cAMP and (2) the redistribution of YFP-tagged receptors to the cell's interior, cAMP was found to induce little or no loss of ligand binding (LLB) in vegetative cells. However, the ability to induce LLB increased progressively over the initial 6 hrs of development, reaching ∼70% in cells undergoing aggregation. Despite these reductions in surface binding, detectable cAR1-YFP redistribution could be induced by cAMP only after the cells reached the mound stage (10 hrs) and was found to occur naturally by the ensuing slug stage (18 hrs). Site-directed substitution of a cluster of 5 serines in the receptor's cytoplasmic tail that was previously shown to be the principal site of cAMP-induced cAR1 phosphorylation impaired both LLB and receptor redistribution and furthermore resulted in mound-stage developmental arrest, suggesting that phosphorylation of cAR1 is a prerequisite for its internalization and that cAR1 internalization is required for post-aggregative development. To assess the involvement of clathrin mediated endocytosis, Dictyostelium cells lacking the clathrin light chain gene (clc-) or either of two dynamin genes were examined and found to be defective in LLB and, in the case of clc- cells, also cAR1 redistribution and turnover. Furthermore, cAR1 overexpression in clc- cells (like the serine mutant in wild-type cells) promoted developmental arrest in mounds. The mound-arrest phenotype was also recapitulated in a wild-type background by the specific expression of cAR1 in prestalk cells (but not prespore cells), suggesting that development depends critically on internalization and clearance of cAR1 from these cells. Persistent cAR1 expression following aggregation was found to be associated with aberrant expression of prestalk and prespore genes, which may adversely affect development in the prestalk cell lineage. The PI3 kinase-TORC2 signal transduction pathway, known to be important for Dictyostelium chemotaxis and internalization of yeast pheromone receptors, was examined using chemical inhibitors and null cells and found to be necessary for cAR1 internalization. In conclusion, cAR1 was shown to be similar to other GPCRs in that its internalization depends on phosphorylation of cytoplasmic domain serines, utilizes clathrin and dynamin, and involves the TORC2 complex. In addition, the findings presented here that cAR1 internalization is both developmentally regulated and required for normal development represent a novel regulatory paradigm that might pertain to other GPCRs known to play important roles in the development of humans and other metazoans. ^
Resumo:
The mammalian Forkhead Box (Fox) transcription factor (FoxM1) is implicated in tumorgenesis. However, the role and regulation of FoxM1 in gastric cancer remain unknown.^ I examined FoxM1 expression in 86 cases of primary gastric cancer and 57 normal gastric tissue specimens. I found weak expression of FoxM1 protein in normal gastric mucosa, whereas I observed strong staining for FoxM1 in tumor-cell nuclei in various gastric tumors and lymph node metastases. The aberrant FoxM1 expression is associated with VEGF expression and increased angiogenesis in human gastric cancer. A Cox proportional hazards model revealed that FoxM1 expression was an independent prognostic factor in multivariate analysis. Furthermore, overexpression of FoxM1 by gene transfer significantly promoted the growth and metastasis of gastric cancer cells in orthotopic mouse models, whereas knockdown of FoxM1 expression by small interfering RNA did the opposite. Next, I observed that alteration of tumor growth and metastasis by elevated FoxM1 expression was directly correlated with alteration of VEGF expression and angiogenesis. In addition, promotion of gastric tumorigenesis by FoxM1 directly and significantly correlated with transactivation of vascular endothelial growth factor (VEGF) expression and elevation of angiogenesis. ^ To further investigate the underlying mechanisms that result in FoxM1 overexpression in gastric cancer, I investigated FoxM1 and Krüppel-like factor 4 (KLF4) expressions in primary gastric cancer and normal gastric tissue specimens. Concomitance of increased expression of FoxM1 protein and decreased expression of KLF4 protein was evident in human gastric cancer. Enforced KLF4 expression suppressed FoxM1 protein expression. Moreover, a region within the proximal FoxM1 promoter was identified to have KLF4-binding sites. Finally, I found an increased FoxM1 expression in gastric mucosa of villin-Cre -directed tissue specific Klf4-null mice.^ In summary, I offered both clinical and mechanistic evidence that dysregulated expression of FoxM1 play an important role in gastric cancer development and progression, while KLF4 mediates negative regulation of FoxM1 expression and its loss significantly contributes to FoxM1 dysregulation. ^
Resumo:
MAX dimerization protein 1 (MAD1) is a basic-helix-loop-helix transcription factors that recruits transcription repressor such as HDAC to suppress target genes transcription. It antagonizes to MYC because the promoter binding sites for MYC are usually also serve as the binding sites for MAD1 so they compete for it. However, the mechanism of the switch between MYC and MAD1 in turning on and off of genes' transcription is obscure. In this study, we demonstrated that AKT-mediated MAD1 phosphorylation inhibits MAD1 transcription repression function. The association between MAD1 and its target genes' promoter is reduced after been phosphorylated by AKT; therefore, consequently, allows MYC to occupy the binding site and activates transcription. Mutation of such phosphorylation site abrogates the inhibition from AKT. In addition, functional assays demonstrated that AKT suppressed MAD1-mediated transcription repression of its target genes hTERT and ODC. Cell cycle and cell growth were also been released from inhibition by MAD1 in the presents of AKT. Taken together, our study suggests that MAD1 is a novel substrate of AKT and AKT-mediated MAD1 phosphorylation inhibits MAD1function; therefore, activates MAD1 target genes expression. ^ Furthermore, analysis of protein-protein interaction is indispensable for current molecular biology research, but multiplex protein dynamics in cells is too complicated to be analyzed by using existing biochemical methods. To overcome the disadvantage, we have developed a single molecule level detection system with nanofluidic chip. Single molecule was analyzed based on their fluorescent profile and their profiles were plotted into 2 dimensional time co-incident photon burst diagram (2DTP). From this 2DTP, protein complexes were characterized. These results demonstrate that the nanochannel protein detection system is a promising tool for future molecular biology. ^
Resumo:
Chronic exposure of the airways to cigarette smoke induces inflammatory response and genomic instability that play important roles in lung cancer development. Nuclear factor kappa B (NF-κB), the major intracellular mediator of inflammatory signals, is frequently activated in preneoplastic and malignant lung lesions. ^ Previously, we had shown that a lung tumor suppressor GPRC5A is frequently repressed in human non-small cell lung cancers (NSCLC) cells and lung tumor specimens. Recently, other groups have shown that human GPRC5A transcript levels are higher in bronchial samples of former than of current smokers. These results suggested that smoking represses GPRC5A expression and thus promotes the occurrence of lung cancer. We hypothesized that cigarette smoking or associated inflammatory response repressed GPRC5A expression through NF-κB signaling. ^ To determine the effect of inflammation, we examined GPRC5A protein expression in several lung cell lines following by TNF-α treatment. TNF-α significantly suppressed GPRC5A expression in normal small airway epithelial cells (SAEC) as well as in Calu-1 cells. Real-time PCR analysis indicated that TNF-α inhibits GPRC5A expression at the transcriptional level. NF-κB, the major downstream effectors of TNF-α signaling, mediates TNF-α-induced repression of GPRC5A because over-expression of NF-κB suppressed GPRC5A. To determine the region in the GPRC5A promoter through which NF-κB acts, we examined the ability of TNF-α to inhibit a series of reporter constructs with different deletions of GPRC5A promoter. The luciferase assay showed that the potential NF-κB binding sites containing region are irresponsible for TNF-α-induced suppression. Further analysis using constructs with different deletions in p65 revealed that NF-κB-mediated repression of GPRC5A is transcription-independent. Co-immunoprecipitation assays revealed that NF-κB could form a complex with RAR/RXR heterodimer. Moreover, the inhibitory effect of NF-κB has been found to be proportional to NF-κB/RAR ratio in luciferase assay. Finally, Chromatin IP demonstrated that NF-κB/p65 bound to GPRC5A promoter as well as RAR/RXR and suppressed transcription. Taken together, we propose that inflammation-induced NF-κB activation disrupts the RA signaling and suppresses GPRC5A expression and thus contributes to the oncogenesis of lung cancer. Our studies shed new light on the pathogenesis of lung cancer and potentially provide novel interventions for preventing and treating this disease. ^
Resumo:
Asbestos and silica are important industrial hazards. Exposure to these dusts can result in pulmonary fibrosis and, in the case of asbestos, cancer. Although the hazards of asbestos and silica exposure have long been known, the pathogenesis of dust-related disease is not well understood. Both silica and asbestos are thought to alter the function of the alveolar macrophage, but the nature of the biochemical alteration is unknown. Therefore, this study examined the effect of asbestos and silica on the activation pathway of the guinea pig alveolar macrophage. Activation of macrophages by physiological agents results in stimulation of phospholipase C causing phosphatidyl inositol turnover and intracellular calcium mobilization. Phosphatidyl inositol turnover produces diacylglycerol which activates protein kinase C causing superoxide anion production.^ Chrysotile stimulated alveolar macrophages to produce superoxide anion. This stimulation proceeded via phospholipase C, since chrysotile stimulated phosphatidyl inositol turnover and intracellular calcium mobilization. The possible involvement of a coupling protein was evaluated by pretreating cells with pertussis toxin. Pertussis toxin pretreatment partially inhibited chrysotile stimulation, suggesting that chrysotile activates a coupling protein in an non-classical manner. Potential binding sites for chrysotile stimulation were examined using a series of nine lectins. Chrysotile-stimulated superoxide anion production was blocked by pretreatment with lectins which bound to N-acetylglucosamine, but not by lectins which bound to mannose, fucose, or N-acetylgalactosamine. In addition, incubation with the N-acetylglucosamine polymer, chitin, inhibited chrysotile-stimulated superoxide anion production, suggesting that chrysotile stimulated superoxide anion production by binding to N-acetylglucosamine residues.^ On the other hand, silica did not stimulate superoxide anion production. The effect of silica on agonist stimulation of this pathway was examined using two stimulants of superoxide anion production, N-formyl-nle-leu-phe (FNLP, which stimulates through phospholipase C) and phorbol-12,13-dibutyrate (which directly activates protein kinase C). Sublethal doses of silica inhibited FNLP-stimulated superoxide anion production, but did not affect phorbol-12,13-dibutyrate-stimulated superoxide anion production, suggesting that the site of inhibition precedes protein kinase C. This inhibition was not due to cell membrane damage, since cell permeability to calcium-45 and rubidium-86 was not increased. It is concluded that chrysotile binds to N-acetylglucosamine residues on macrophage surface glycoproteins to stimulate the physiological pathway resulting in superoxide anion production. In contrast, silica does not stimulate superoxide anion production, but it did inhibit FNLP-stimulated superoxide anion production. ^
Resumo:
Lung cancer is the leading cause of cancer-related mortality in the US. Emerging evidence has shown that host genetic factors can interact with environmental exposures to influence patient susceptibility to the diseases as well as clinical outcomes, such as survival and recurrence. We aimed to identify genetic prognostic markers for non-small cell lung cancer (NSCLC), a major (85%) subtype of lung cancer, and also in other subgroups. With the fast evolution of genotyping technology, genetic association studies have went through candidate gene approach, to pathway-based approach, to the genome wide association study (GWAS). Even in the era of GWAS, pathway-based approach has its own advantages on studying cancer clinical outcomes: it is cost-effective, requiring a smaller sample size than GWAS easier to identify a validation population and explore gene-gene interactions. In the current study, we adopted pathway-based approach focusing on two critical pathways - miRNA and inflammation pathways. MicroRNAs (miRNA) post-transcriptionally regulate around 30% of human genes. Polymorphisms within miRNA processing pathways and binding sites may influence patients’ prognosis through altered gene regulation. Inflammation plays an important role in cancer initiation and progression, and also has shown to impact patients’ clinical outcomes. We first evaluated 240 single nucleotide polymorphisms (SNPs) in miRNA biogenesis genes and predicted binding sites in NSCLC patients to determine associations with clinical outcomes in early-stage (stage I and II) and late-stage (stage III and IV) lung cancer patients, respectively. First, in 535 early-stage patients, after correcting multiple comparisons, FZD4:rs713065 (hazard ratio [HR]:0.46, 95% confidence interval [CI]:0.32-0.65) showed a significant inverse association with survival in early stage surgery-only patients. SP1:rs17695156 (HR:2.22, 95% CI:1.44-3.41) and DROSHA:rs6886834 (HR:6.38, 95% CI:2.49-16.31) conferred increased risk of progression in the all patients and surgery-only populations, respectively. FAS:rs2234978 was significantly associated with improved survival in all patients (HR:0.59, 95% CI:0.44-0.77) and in the surgery plus chemotherapy populations (HR:0.19, 95% CI:0.07-0.46).. Functional genomics analysis demonstrated that this variant creates a miR-651 binding site resulting in altered miRNA regulation of FAS, providing biological plausibility for the observed association. We then analyzed these associations in 598 late-stage patients. After multiple comparison corrections, no SNPs remained significant in the late stage group, while the top SNP NAT1:rs15561 (HR=1.98, 96%CI=1.32-2.94) conferred a significantly increased risk of death in the chemotherapy subgroup. To test the hypothesis that genetic variants in the inflammation-related pathways may be associated with survival in NSCLC patients, we first conducted a three-stage study. In the discovery phase, we investigated a comprehensive panel of 11,930 inflammation-related SNPs in three independent lung cancer populations. A missense SNP (rs2071554) in HLA-DOB was significantly associated with poor survival in the discovery population (HR: 1.46, 95% CI: 1.02-2.09), internal validation population (HR: 1.51, 95% CI: 1.02-2.25), and external validation (HR: 1.52, 95% CI: 1.01-2.29) population. Rs2900420 in KLRK1 was significantly associated with a reduced risk for death in the discovery (HR: 0.76, 95% CI: 0.60-0.96) and internal validation (HR: 0.77, 95% CI: 0.61-0.99) populations, and the association reached borderline significance in the external validation population (HR: 0.80, 95% CI: 0.63-1.02). We also evaluated these inflammation-related SNPs in NSCLC patients in never smokers. Lung cancer in never smokers has been increasingly recognized as distinct disease from that in ever-smokers. A two-stage study was performed using a discovery population from MD Anderson (411 patients) and a validation population from Mayo Clinic (311 patients). Three SNPs (IL17RA:rs879576, BMP8A:rs698141, and STK:rs290229) that were significantly associated with survival were validated (pCD74:rs1056400 and CD38:rs10805347) were borderline significant (p=0.08) in the Mayo Clinic population. In the combined analysis, IL17RA:rs879576 resulted in a 40% reduction in the risk for death (p=4.1 × 10-5 [p=0.61, heterogeneity test]). We also validated a survival tree created in MD Anderson population in the Mayo Clinic population. In conclusion, our results provided strong evidence that genetic variations in specific pathways that examined (miRNA and inflammation pathways) influenced clinical outcomes in NSCLC patients, and with further functional studies, the novel loci have potential to be translated into clinical use.
Resumo:
Mechanisms that allow pathogens to colonize the host are not the product of isolated genes, but instead emerge from the concerted operation of regulatory networks. Therefore, identifying components and the systemic behavior of networks is necessary to a better understanding of gene regulation and pathogenesis. To this end, I have developed systems biology approaches to study transcriptional and post-transcriptional gene regulation in bacteria, with an emphasis in the human pathogen Mycobacterium tuberculosis (Mtb). First, I developed a network response method to identify parts of the Mtb global transcriptional regulatory network utilized by the pathogen to counteract phagosomal stresses and survive within resting macrophages. As a result, the method unveiled transcriptional regulators and associated regulons utilized by Mtb to establish a successful infection of macrophages throughout the first 14 days of infection. Additionally, this network-based analysis identified the production of Fe-S proteins coupled to lipid metabolism through the alkane hydroxylase complex as a possible strategy employed by Mtb to survive in the host. Second, I developed a network inference method to infer the small non-coding RNA (sRNA) regulatory network in Mtb. The method identifies sRNA-mRNA interactions by integrating a priori knowledge of possible binding sites with structure-driven identification of binding sites. The reconstructed network was useful to predict functional roles for the multitude of sRNAs recently discovered in the pathogen, being that several sRNAs were postulated to be involved in virulence-related processes. Finally, I applied a combined experimental and computational approach to study post-transcriptional repression mediated by small non-coding RNAs in bacteria. Specifically, a probabilistic ranking methodology termed rank-conciliation was developed to infer sRNA-mRNA interactions based on multiple types of data. The method was shown to improve target prediction in Escherichia coli, and therefore is useful to prioritize candidate targets for experimental validation.
Resumo:
Nonsyndromic cleft lip with or without cleft palate (NSCLP) is a common birth defect with a multifactorial etiology. Despite decades of research, the genetic underpinnings of NSCLP still remain largely unexplained. A genome wide association study (GWAS) of a large NSCLP African American family with seven affected individuals across three generations found evidence for linkage at 8q21.3-24.12 (LOD = 2.98). This region contained three biologically relevant candidate genes: Frizzled-6 (FZD6) (LOD = 2.8), Matrilin-2 (MATN2) (LOD = 2.3), and Solute Carrier Family 25, Member 32 (SLC26A32) (LOD = 1.6). Sequencing of the coding regions and the 5’ and 3’ UTRs of these genes in two affected family members identified a rare intronic variant, rs138557689 (c.-153+432A>C), in FZD6. The rs138557689/C allele segregated with the NSCLP phenotype; in silico analysis predicted and EMSA analysis showed that the 138557689/C allele creates new DNA binding sites. FZD6 is part of the WNT pathway, which is involved in craniofacial development, including midface development and upper lip fusion. Our novel findings suggest that an alteration in FZD6 gene regulation may perturb this tightly controlled biological pathway and in turn contribute to the development of NSCLP in this family. Studies are underway to further define how the rs138557689/C variant affects expression of FZD6.
Resumo:
In melanoma patient specimens and cell lines, the over expression of galectin-3 is associated with disease progression and metastatic potential. Herein, we have sought out to determine whether galectin-3 affects the malignant melanoma phenotype by regulating downstream target genes. To that end, galectin-3 was stably silenced by utilizing the lentivirus-incorporated small hairpin RNA in two metastatic melanoma cell lines, WM2664 and A375SM, and subjected to gene expression microarray analysis. We identified and validated the lysophospholipase D enzyme, autotaxin, a promoter of migration, invasion, and tumorigenesis, to be down regulated after silencing galectin-3. Silencing galectin-3 significantly reduced the promoter activity of autotaxin. Interestingly, we also found the transcription factor NFAT1 to have reduced protein expression after silencing galectin-3. Electrophoretic mobility shift assays from previous reports have shown that NFAT1 binds to the autotaxin promoter in two locations. ChIP analysis was performed, and we observed a complete loss of bound NFAT1 to the autotaxin promoter after silencing galectin-3 in melanoma cells. Mutation of the NFAT1 binding sites at either location reduces autotaxin promoter activity. Silencing NFAT1 reduces autotaxin expression while over expressing NFAT1 in NFAT1 negative SB-2 melanoma cells induces autotaxin expression. These data suggest that galectin-3 silencing reduces autotaxin transcription by reducing the amount of NFAT1 protein expression. Rescue of galectin-3 rescues both NFAT1 and autotaxin. We also show that the re-expression of autotaxin in galectin-3 shRNA melanoma cells rescues the angiogenic phenotype in vivo. Furthermore, we identify NFAT1 as a potent inducer of tumor growth and experimental lung metastasis. Our data elucidate a previously unidentified mechanism by which galectin-3 regulates autotaxin and assign a novel role for NFAT1 during melanoma progression.
Resumo:
Wilms tumor is a childhood tumor of the kidney arising from the undifferentiated metanephric mesenchyme. Tumorigenesis is attributed to a number of genetic and epigenetic alterations. In 20% of Wilms tumors, Wilms tumor gene 1 (WT1) undergoes inactivating homozygous mutations causing loss of function of the zinc finger transcription factor it encodes. It is hypothesized that mutations in WT1 result in dysregulation of downstream target genes, leading to aberrant kidney development and/or Wilms tumor. These downstream target genes are largely unknown, and identification is important for further understanding Wilms tumor development. Heatmap data of human Wilms tumor protein expression, generated by reverse phase protein assay analysis (RPPA), show significant correlation between WT1 mutation status and low PRKCα expression (p= 0.00013); additionally, p-PRKCα (S657) also shows decreased expression in these samples (p= 0.00373). These data suggest that the WT1 transcription factor regulates PRKCα expression, and that PRKCα plays a potential role in Wilms tumor tumorigenesis. We hypothesize that the WT1 transcription factor directly/indirectly regulates PRKCα and mutations occurring in WT1 lead to decreased expression of PRKCα. Prkcα and Wt1 have been shown to co-localize in E14.5 mesenchymal cells of the developing kidney. siRNA knockdown, in-vivo ablation, and tet-inducible expression of Wt1 each independently confirm regulation of Prkcα expression by Wt1 at both RNA and protein levels, and investigation into possible WT1 binding sites in PRKCα regulatory regions has identified multiple sites to be confirmed by luciferase reporter constructs. With the goal of identifying WT1 and PRKCα downstream targets, RPPA analysis of protein expression in mesenchymal cell culture, following lentiviral delivered shRNA knockdown of Wt1 and shRNA knockdown of Prkcα, will be carried out. Apart from Wilms tumor, WT1 also plays an important role in Acute Myeloid Leukemia (AML). WT1 mutation status has been implicated, controversially, as an independent poor-prognosis factor in leukemia, leading to decreased probability of overall survival, complete remission, and disease free survival. RPPA analysis of AML patient samples showed significant decreases in PRKCα/p-PRKCα protein expression in a subset of patients (Kornblau, personal communication); therefore, the possible role of WT1 and PRKCα in leukemia disease progression is an additional focus of this study. WT1 mutation analysis of diploid leukemia patient samples revealed two patients with mutations predicted to affect WT1 activity; of these two samples, only one corresponded to the low PRKCα expression cohort. Further characterization of the role of WT1 in AML, and further understanding of WT1 regulated PRKCα expression, will be gained following RPPA analysis of protein expression in HL60 leukemia cell lines with lentiviral delivered shRNA knockdown of WT1 and shRNA knockdown of PRKCα.
Resumo:
Transcriptional enhancers are genomic DNA sequences that contain clustered transcription factor (TF) binding sites. When combinations of TFs bind to enhancer sequences they act together with basal transcriptional machinery to regulate the timing, location and quantity of gene transcription. Elucidating the genetic mechanisms responsible for differential gene expression, including the role of enhancers, during embryological and postnatal development is essential to an understanding of evolutionary processes and disease etiology. Numerous methods are in use to identify and characterize enhancers. Several high-throughput methods generate large datasets of enhancer sequences with putative roles in embryonic development. However, few enhancers have been deleted from the genome to determine their roles in the development of specific structures, such as the limb. Manipulation of enhancers at their endogenous loci, such as the deletion of such elements, leads to a better understanding of the regulatory interactions, rules and complexities that contribute to faithful and variant gene transcription – the molecular genetic substrate of evolution and disease. To understand the endogenous roles of two distinct enhancers known to be active in the mouse embryo limb bud we deleted them from the mouse genome. I hypothesized that deletion of these enhancers would lead to aberrant limb development. The enhancers were selected because of their association with p300, a protein associated with active transcription, and because the human enhancer sequences drive distinct lacZ expression patterns in limb buds of embryonic day (E) 11.5 transgenic mice. To confirm that the orthologous mouse enhancers, mouse 280 and 1442 (M280 and M1442, respectively), regulate expression in the developing limb we generated stable transgenic lines, and examined lacZ expression. In M280-lacZ mice, expression was detected in E11.5 fore- and hindlimbs in a region that corresponds to digits II-IV. M1442-lacZ mice exhibited lacZ expression in posterior and anterior margins of the fore- and hindlimbs that overlapped with digits I and V and several wrist bones. We generated mice lacking the M280 and M1442 enhancers by gene targeting. Intercrosses between M280 -/+ and M1442 -/+, respectively, generated M280 and M1442 null mice, which are born at expected Mendelian ratios and manifest no gross limb malformations. Quantitative real-time PCR of mutant E11.5 limb buds indicated that significant changes in transcriptional output of enhancer-proximal genes accompanied the deletion of both M280 and M1442. In neonatal null mice we observed that all limb bones are present in their expected positions, an observation also confirmed by histology of E18.5 distal limbs. Fine-scale measurement of E18.5 digit bone lengths found no differences between mutant and control embryos. Furthermore, when the developmental progression of cartilaginous elements was analyzed in M280 and M1442 embryos from E13.5-E15.5, transient development defects were not detected. These results demonstrate that M280 and M1442 are not required for mouse limb development. Though M280 is not required for embryonic limb development it is required for the development and/or maintenance of body size – adult M280 mice are significantly smaller than control littermates. These studies highlight the importance of experiments that manipulate enhancers in situ to understand their contribution to development.
Resumo:
Development of homology modeling methods will remain an area of active research. These methods aim to develop and model increasingly accurate three-dimensional structures of yet uncrystallized therapeutically relevant proteins e.g. Class A G-Protein Coupled Receptors. Incorporating protein flexibility is one way to achieve this goal. Here, I will discuss the enhancement and validation of the ligand-steered modeling, originally developed by Dr. Claudio Cavasotto, via cross modeling of the newly crystallized GPCR structures. This method uses known ligands and known experimental information to optimize relevant protein binding sites by incorporating protein flexibility. The ligand-steered models were able to model, reasonably reproduce binding sites and the co-crystallized native ligand poses of the β2 adrenergic and Adenosine 2A receptors using a single template structure. They also performed better than the choice of template, and crude models in a small scale high-throughput docking experiments and compound selectivity studies. Next, the application of this method to develop high-quality homology models of Cannabinoid Receptor 2, an emerging non-psychotic pain management target, is discussed. These models were validated by their ability to rationalize structure activity relationship data of two, inverse agonist and agonist, series of compounds. The method was also applied to improve the virtual screening performance of the β2 adrenergic crystal structure by optimizing the binding site using β2 specific compounds. These results show the feasibility of optimizing only the pharmacologically relevant protein binding sites and applicability to structure-based drug design projects.
Resumo:
To understand how the serum amyloid A (SAA) genes are regulated, the cis-acting elements and trans-acting factors involved in the regulation of mouse SAA3 and rat SAA1 genes expression during inflammation were analyzed.^ To identify DNA sequences involved in the liver-specific expression of the mouse SAA3 gene, the 5$\sp\prime$ flanking region of this gene was analyzed by transient transfection studies. Results suggest that C/EBP, a liver-enriched transcription factor, plays an important role for the enhanced expression of the mouse SAA3 gene in hepatocytes.^ Transfection studies of the regulation of the expression of rat SAA1 gene indicated that a 322 bp fragment ($-$304 to +18) of the gene contains sufficient information for cytokine-induced expression of the reporter gene in a liver cell-specific manner. Further functional analysis of the 5$\sp\prime$ flanking region of the rat SAA1 gene demonstrated that a 65 bp DNA fragment ($-$138/$-$73) can confer cytokine-inducibility onto a heterologous promoter both in liver and nonliver cells. DNase I footprint and gel retardation assays identified five putative cis-regulatory elements within the 5$\sp\prime$ flanking region of the gene: one inducible element, a NF$\kappa$B binding site and four constitutive elements. Two constitutive elements, footprint regions I and III, were identified as C/EBP binding sites with region III having over a 10-fold higher affinity for C/EBP binding than region I. Functional analysis of the cis-elements indicated that C/EBP(I) and C/EBP(III) confer liver cell-specific activation onto a heterologous promoter, while sequences corresponding to the NF$\kappa$B element and C/EBP(I) impart cytokine responsiveness onto the heterologous promoter. These results suggest that C/EBP(I) possesses two functions: liver-specific activation and cytokine responsiveness. The identification of two cytokine responsive elements (NF$\kappa$B and C/EBP(I)), and two liver-specific elements (C/EBP(I) and C/EBP(III)) implies that multiple cis-acting elements are involved in the regulation of the expression of the rat SAA1 gene. The tissue-specific and cytokine-induced expression of rat SAA1 gene is likely the result of the interactions of these cis-acting elements with their cognate trans-acting factors as well as the interplay between the different cis-acting elements and their binding factors. (Abstract shortened with permission of author.) ^