96 resultados para 270602 Animal Physiology - Cell


Relevância:

100.00% 100.00%

Publicador:

Resumo:

After intestinal bypass, the mucosa of the in-continuity segment (ICS) of intestine undergoes adaptive hyperplasia which results in increased absorptive function per length of intestine. In the present study, 70% of the small intestine was bypassed in rats to determine if intestinal muscle also adapts after bypass. To determine the effect of bypass on intestinal transit, a poorly absorbed marker substance was introduced into the orad portion of the ICS or bypassed loop (BL). Significantly less marker (P < 0.05) was passed from the ICS into the colon in 50 minutes in fed rats at 14 days compared to at 3 days after bypass. In 150 minutes there was more marker in the colon of fed rats at 3 and 14 days but not at 35 days after bypass than in control. In the BL, transit was slowed significantly in fed rats at 3 and 35 days and in fasted rats at 3 days but not 35 days after bypass compared to control. The circular muscle from the BL and the distal but not proximal portion of the ICS developed significantly more carbachol-stimulated force in vitro at 35 but not 3 days after bypass compared to unoperated but not sham-operated controls. At 35 days after bypass, the muscle layers had a greater muscle wet weight and protein content compared to both unoperated and sham-operated control in both the proximal and distal portions of the ICS. Similarly, there was more muscle in histological sections of the BL and distal portion of the ICS at 35 days after bypass compared to either control. Nonetheless, at 35 days after bypass actomyosin content as a fraction of muscle weight or total protein content was not different from control. The results support the hypothesis that there was a functional adaptation, i.e. slowed transit in fed rats that allowed more time for absorption. Feeding caused slowed transit in the BL as well as the ICS. Other results suggest that an increased amount of functional muscle formed in the distal portion of the ICS after bypass. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pineal gland is known to be light sensitive and to be involved in the seasonal reproduction of male golden hamster Mesocricetus auratus. In general, the pineal gland has been demonstrated to be inhibitory to the reproductive system of the male golden hamster. Melatonin is a pineal hormone which can mimic the action of the pineal gland upon the reproductive system. However, the actual site(s) of melatonin action in the hamster has not been demonstrated. In this study a direct effect of melatonin on the release of FSH and LH from superfused hamster pituitary glands was investigated.^ The superfused pituitary glands showed a stable in vitro basal release of FSH and LH for up to 10 hours. The superfused pituitaries demonstrated reproducible responses to repeated pulses of 10('-8) M LHRH, and a dose-dependent response to stimulation with different concentrations of LHRH.^ Melatonin inhibited the basal release of FSH and LH from superfused hamster pituitary glands. This effect of melatonin was specific and not a general indolamine or catecholamine effect.^ The superfused pituitaries had a diurnal differential responsiveness to physiological concentrations of melatonin with respect to FSH and LH release which were related to the light cycle used to maintain the experimental animals. A LD 14:10 photoperiod cycle was used with light on from 5 a.m. till 7 p.m.. With pituitary glands obtained at 8:30 a.m., the basal release of FSH exhibited an initial inhibition, a gradual rebound at approximately two hours after the beginning of melatonin superfusion, and a significant overshoot of FSH release after the cessation of infusion with melatonin (Morning Response). If the pituitary glands were obtained from hamsters which were sacrificed at 3:30 p.m., the release rate of FSH exhibited an inhibition during the entire period of melatonin infusion with a rebound effect appearing only after melatonin infusion was discontinued (Afternoon Response). There was no significant difference in the responsiveness of the pituitary gland to infusion with melatonin at either 8:30 a.m. or 3:30 p.m. with respect to LH release. Also, melatonin could not inhibit the gonadotropins response to continuous superfusion with 10('-9) M LHRH in pituitaries obtained at either 8:30 a.m. or 3:30 p.m., nor inhibit the stimulatory effect of pulsatile 10('-9) M LHRH. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rheoencephalogram (REG) is the change in the electrical impedance of the head that occurs with each heart beat. Without knowledge of the relationship between cerebral blood flow (Q) and the REG, the utility of the REG in the study of the cerebral vasculature is greatly limited. The hypothesis is that the relationship between the REG and Q when venous outflow is nonpulsatile is^ (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI)^ where K is a proportionality constant and Q is the mean Q.^ Pulsatile CBF was measured in the goat via a chronically implanted electromagnetic flowmeter. Electrodes were implanted in the ipsilateral cerebral hemisphere, and the REG was measured with a two electrode impedance plethysmograph. Measurements were made with the animal's head elevated so that venous flow pulsations were not transmitted from the heart to the cerebral veins. Measurements were made under conditions of varied cerebrovascular resistance induced by altering blood CO(,2) levels and under conditions of high and low cerebrospinal fluid pressures. There was a high correlation (r = .922-.983) between the REG calculated from the hypothesized relationship and the measured REG under all conditions.^ Other investigators have proposed that the REG results from linear changes in blood resistivity proportional to blood velocity. There was little to no correlation between the measured REG and the flow velocity ( r = .022-.306). A linear combination of the flow velocity and the hypothesized relationship between the REG and Q did not predict the measured REG significantly better than the hypothesized relationship alone in 37 out of 50 experiments.^ Jacquy proposed an index (F) of cerebral blood flow calculated from amplitudes and latencies of the REG. The F index was highly correlated (r = .929) with measured cerebral blood flow under control and hypercapnic conditions, but was not as highly correlated under conditions of hypocapnia (r = .723) and arterial hypotension (r = .681).^ The results demonstrate that the REG is not determined by mean cerebral blood flow, but by the pulsatile flow only. Thus, the utility of the REG in the determination of mean cerebral blood flow is limited. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the work performed in this dissertation was to examine some of the possible regulatory mechanisms involved in the initiation of muscular atrophy during periods of decreased muscle utilization resulting from hindlimb immobilization in the rat. A 37% decrease in the rate of total muscle protein synthesis which has been observed to occur in the first 6 h of immobilization contributes significantly to the observed loss of protein during immobilization.^ The rates of cytochrome c and actin synthesis were determined in adult rat red vastus lateralis and gastrocnemius muscles, respectively, by the constant infusion and incorporation of ('3)H-tyrosine into protein. The fractional synthesis rates of both actin and cytochrome c were significantly decreased (P < 0.05) in the 6th h of hindlimb immobilization.^ RHA was extracted from adult rat gastrocnemius muscle by modification of the phenol: chloroform: SDS extraction procedures commonly used for preparation of RNA for hybridization analysis from other mammalian tissues. RNA content of rat gastrocnemius muscle, as determined by this method of extraction and its subsequent quantification by UV absorbance and orcinol assay, was significantly greater than the RNA content previously determined for adult rat gastrocnemius by other commonly employed methods.^ RNA extracted by this method from gastrocnemius muscles of control and 6h immobilized rats was subjected to "dot blot" hybridization to ('32)P-labelled probe from plasmid p749, containing a cDNA sequence complementary to (alpha)-actin mRNA and from rat skeletal muscle. (alpha)-Actin specific mRNA content as estimated by this procedure is not significantly decreased in rat gastrocnemius following 6h or hindlimb immobilization. However, (alpha)-actin specific mRNA content is significantly decreased (P < 0.05) in adult rat gastrocnemius (alpha)-actin specific mRNA is not decreased in adult rat gastrocnemius muscle following 6h of immobilization, a time when actin synthesis is significantly decreased, it is concluded that a change in (alpha)-actin specific mRNA content is not the initiating event responsible for the early decrease in actin synthesis observed in the 6th h of immobilization. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. A review of the literature suggests that Hypertension (HTN) in older adults is associated with sympathetic stimulation that results in increasing blood pressure (BP) reactivity. If clinical assessment of BP captured sympathetic stimulation, it would be valuable for hypertension management. ^ Objectives. The study examined whether reactive change scores from a short BPR protocol, resting blood pressure (BP), or resting pulse pressure (PP) is a better predictor of 24 hour ambulatory BP and BP load in cardiac patients. ^ Method. The study used a single-group design, with both an experimental clinical component and an observational field component. Both components used repeated measurement methods. The study population consisted of 45 adult patients with a mean age of 64.6 ± 8.5 years who were diagnosed with cardiac disease and who were taking anti-hypertensive medication. Blood pressure reactivity was operationalized with a speech protocol. During the speech protocol, BP was measured with an automatic device (Dinamap 825XT) while subjects talked about their health and about their usual day. Twenty-four hour ambulatory BP measurement (Spacelabs 90207 monitor) followed the speech protocol. ^ Results. Resting SBP and resting PP were significant predictors of 24-hour SBP, and resting SBP was a significant predictor of SBP load. No predictors were significant of 24-hour DBP or DBP load. ^ Conclusions. Initial resting BP and PP may be used in clinical settings to assess hypertension management. Future studies are necessary to confirm the ability of resting BP to predict ABP and BP load in older, medicated hypertensives. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies of normal children have linked body fat but not body fat distribution (BFD), to higher blood pressures, lipids, and insulin resistance (Berenson et al., 1988) BFD is a well-established risk factor for cardiovascular disease in adults (Björntorp, 1988). This study investigates the relation of BFD and serum lipids at baseline in children from Project HeartBeat!, a study of the growth and development of cardiovascular risk factors in 678 children in three cohorts measured initially at ages 8, 11, and 14 years. Initially, two of four indices of BFD were significantly related to the lipids: ratio of upper to lower body skinfolds (ln US:LS) and conicity (C Index). A factor analysis reduced the information in the serum lipids to two vectors: (1) total cholesterol + LDL-cholesterol and (2) HDL-cholesterol − triglycerides, which together accounted for 85% of the lipid variation. Using each serum lipid and vector as separate dependent variables, linear and quadratic regression models were constructed to examine the predictive ability of the two BFD variables, controlling for total body fat, gender, ethnicity (Black, non-Black) and maturation. Linear models provided an acceptable fit. Percent body fat (%BF) was a significant predictor in each and every lipid model, independent of age, maturation, or ethnicity (p ≤ 0.05). No BFD variable entered the equation for total or LDL-cholesterol, although there was a significant maturity by BFD interaction for LDL (ln US:LS was a significant predictor in more mature individuals). Both %BF and BFD (by way of Conicity) were significant predictors of HDL-cholesterol and triglycerides (p ≤ 0.01). All models were statistically significant at a high level (p ≤ 0.01), but adjusted R 2's for all models were low (0.05–0.15). Body fat distribution is a significant predictor of lipids in normal children, but secondarily to %BF, and for LDL-cholesterol in particular, the relation is dependent on maturity status. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscles can adapt to increased mechanical forces (or loading) by increasing the size and strength of the muscle. Knowledge of the molecular mechanisms by which muscle responds to increased loading may lead to the discovery of novel treatment strategies for muscle wasting and frailty. The objective of this research was to examine the temporal associations between the activation of specific signaling pathway intermediates and their potential upstream regulator(s) in response to increased muscle loading. Previous work has demonstrated that focal adhesion kinase (FAK) activity is increased in overloaded hypertrophying skeletal muscle. Thus FAK is a candidate for transducing the loading stimulus in skeletal muscle, potentially by activating phosphatidylinositol 3-kinase (PI3K) and members of the mitogen-activated protein kinase (MAPK) family. However, it was unknown if muscle overload would result in activation of PI3K or the MAPKs. Thus, this work seeks to characterized the temporal response of (1) MAPK phosphorylation (including Erk 2, p38 MAPK and JNK), (2) PI3K activity, and (3) FAK tyrosine phosphorylation in response to 24 hours of compensatory overload in the rat soleus and plantaris muscles. In both muscles, overload resulted in transient Increases in the phosphorylation state of Erk2 and JNK, which peaked within the first hour of overload and returned to baseline thereafter. In contrast, p38 MAPK phosphorylation remained elevated throughout the entire 24-hour overload period. Moreover, overload increased PI3K activity only, in the plantaris and only at 12 hours. Moreover, 24 hours of overload induced a significant increase in total protein content in the plantaris but not the soleus. Thus an increase in total muscle protein content within the 24-hour loading period was observed only in muscle exhibiting increased PI3K activity. Surprisingly, FAK tyrosine phosphorylation was not increased during the overload period in either muscle, indicating that PI3K activation and increased MAPK phosphorylation were independent of increased FAK tyrosine phosphorylation. In summary, increased PI3K activity and sustained elevation of p38 MAPK phosphorylation were associated with muscle overload, identifying these pathways as potential mediators of the early hypertrophic response to skeletal muscle overload. This suggests that stimuli or mechanisms that activate these pathways may reduce/minimize muscle wasting and frailty. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although bone morphogenetic proteins (BMPs) were initially identified for their potent bone-inducing activity, their precise roles in processes of endochondral and intramembranous bone formation are far from being clear. Tissue-specific loss-of-function experiments using the BMP receptor type IA (BMPR-IA) are particularly attractive since this receptor is thought to be essential for signaling by the closely related BMPs -2, 4, and 7. To ablate signaling through this receptor during chondrogenesis, we have generated transgenic mice expressing Cre recombinase under the control of the collagen type II (Col2a1) gene regulatory sequences. Mice lacking BMPR-IA function in chondrocytes display a number of skeletal abnormalities, including defects in bones of the chondrocranium, abnormal dorsal vertebral processes, scapulae with severe hypoplasia of dorsal elements, and shortening of the long bones. Alterations in the growth plate of long bones in mutants suggest that BMPR-IA is not required for early steps of the chondrocyte specification, but is rather important in regulation of terminal differentiation. Molecular analysis revealed noticeable downregulation of the Ihh/Ptch signalling pathway, decreased chondrocyte proliferation rate and deregulation of hypertrophy. ^ In order to elucidate the role of BMP signalling in development of the limb and intramembranous ossification, we have used mice expressing Cre recombinase under control of the Prx1 (MHox) regulatory elements (M. Logan, pers comm.). Cre activity was found in those mice in the developing limb bud mesenchyme, as well as in a subset of cranial neural crest cells. Prx1-Cre-induced conditional mutants display prominent defects in distal limb outgrowth, as well as ossification defects in a number of neural crest-derived calvarial bones. Intriguingly, mutant limbs displayed alterations in patterning along all three axes. Molecular analysis revealed ectopic anterior Shh/Ptch signalling pathway activation and expression of some Hox genes. Observed loss of Msx1 and Msx2 expression in the progress zone correlates with downregulation of Cyclin D1 and decreased distal outgrowth. Abnormal ventral localization of Lmx1b-expressing cells along with observed later morphological abnormalities suggest a novel role for BMP signalling in establishment or maintaining of the dorso-ventral polarity in the limb mesoderm. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motility responses of the small intestine of iNOS deficient mice (iNOS −/−) and their wildtype littermates (iNOS+/+) to the inflammatory challenge of lipopolysaccharide (LPS) were investigated. LPS administration failed to attenuate intestinal transit in iNOS−/− mice but depressed transit in their iNOS+/+ littermates. Supporting an inhibitory role for sustained nitric oxide (NO) synthesis in the regulation of intestinal motility during inflammation, iNOS immunoreactivity was upregulated in all regions of the small intestine of iNOS+/+ mice. In contrast, neuronal NOS was barely affected. Cyclooxygenase activation was determined by prostaglandin E2 (PGE2) concentration. Following LPS challenge, PGE2 levels were elevated in all intestinal segments in both animal groups. Moreover, COX-1 and COX-2 protein levels were elevated in iNOS+/+ mice in response to LPS, while COX-2 levels were similarly increased in iNOS −/− intestine. However, no apparent relationship was observed between increased prostaglandin concentrations and attenuated intestinal transit. The presence of heme oxygenase 1 (HO-1) in the murine small intestine was also investigated. In both animal groups HO-1 immunoreactivity in the proximal intestine increased in response to treatment, while the constitutive protein levels detected in the middle and distal intestine were unresponsive to LPS administration. No apparent correlation of HO-1 to the suppression of small intestinal motility induced by LPS administration was detected. The presence of S-nitrosylated contractile proteins in the small intestine was determined. γ-smooth muscle actin was basally nitrosylated as well as in response to LPS, but myosin light chain kinase and myosin regulatory chain (MLC20) were not. In conclusion, in a model of acute intestinal inflammation, iNOS-produced NO plays a significant role in suppressing small intestinal motility while nNOS, COX-1, COX-2 and HO-1 do not participate in this event. S-nitrosylation of γ-smooth muscle actin is associated with elevated levels of nitric oxide in the smooth muscle of murine small intestine. ^