674 resultados para Biology, Molecular|Biology, Cell|Health Sciences, Oncology
Resumo:
In this thesis, we investigated the regulation of the nuclear proto-oncogene, c-fos by estrogen in vivo. In the uterus, estrogen causes a rapid, dramatic and transient induction of c-fos mRNA and this occurs by transcriptional activation. We have discovered a previously unrecognized regulatory mechanism by which fos becomes desensitized to estrogen following the transient induction. We investigated three aspects of this desensitization: (1) the kinetics and general characteristics of the phenomenon; (2) the molecular mechanism of the desensitization; and (3) the relationship of desensitization to estrogen stimulated DNA synthesis. The desensitization occurs between 3-24 hours after initial hormonal stimulation and is reversible within 72 hours. The desensitization is not species specific, in that it occurs in both the rat and mouse. The desensitization also occurs in at least two estrogen responsive tissues, the uterus and vagina. The desensitization is not unique to c-fos, since both c-myc and c-jun show similar patterns of desensitization. However, the desensitization is not observed with creatine kinase B (CKB), indicating that not all estrogen inducible genes become desensitized. In the second general area, we determined the desensitization is at the transcriptional level. The desensitization is homologous, but not heterologous, since estrogen induction does not desensitize c-fos to other agents. Other studies show that the desensitization is not due to the lack of functional estrogen receptors. Taken together, these findings suggest that the desensitization occurs at the level of the estrogen responsive element. In the third major area, we demonstrated that the desensitization appears to be related to estrogen induced DNA synthesis. Support for this suggestion comes from the observation that short acting estrogens which induce fos, but not DNA synthesis, do not produce desensitization. ^
Resumo:
A cloned nontumorigenic prostatic epithelial cell line, NbE-1.4, isolated from Noble (nbl/crx) rat ventral prostate, was used to examine the potential role of activated myc and neu oncogenes in prostate carcinogenesis. Transfection of SV40 promoter/enhancer driven constructs containing either v-myc, truncated c-myc, or neu-T (activated neu) oncogenes was accomplished using calcium phosphate-mediated DNA transfer. Cells were cotransfected, as necessary, with pSV2neo, allowing for selection of positive clones using the antibiotic geneticin (G418). G418 resistant colonies were pooled in some cases or limiting dilution exclusion cloned in others as described. Transfection of NbE-1.4 cells with activated myc oncogenes resulted only in the partial transformation. These cells display an altered morphology and decreased dependence on serum factors in vitro; however, saturation density, soft agar colony formation and growth assay in male athymic nude mice were all negative. Transfection and overexpression of NbE-1.4 cells with an activated neu oncogene alone resulted in tumorigenic conversion. Cell transformation was evident following an examination of the altered cellular morphology, an increased soft agar colony formation, and an acquisition of a tumorigenic potential when injected s.c. into male athymic nude mice. neu-transformed NbE-1.4 cells displayed elevated activity of the neu receptor tyrosine kinase. Furthermore, qualitative changes in tyrosine phosphorylated proteins were found in neu transformed cell clones. These changes were associated with elevated expression of mRNAs for laminin $\beta$1, $\beta$2, and procollagen type IV. The expression of fibronectin and E-cadherin, which are often lost during tumorigenesis, did not correlate with the tumorigenic phenotype. Therefore, it appears that neu oncogene overexpression has been found to be associated with the transformation of rat prostatic epithelial cells, presumably through alterations in gene expression that regulate extracellular matrix. The possible interrelationship and functional significance between neu oncogene expression and the elevated extracellular matrix gene expression is discussed. ^
Resumo:
The neu gene encodes the transmembrane tyrosine kinase growth factor receptor, p185. To study neu induced cellular transformation, we developed revertant cells from the neu transformed NIH 3T3 cell line, B104-1-1, by treating the cells with the chemical mutagen ethylmethane sulfonate. The morphologically normal revertant cells were first selected by their ability to either attach to culture plates or survive in the presence of the cytotoxic reagents colchicine or 5-fluoro-2deoxyuridine. Two of the 21 candidate revertant cell lines isolated were further characterized and were found to lose their anchorage independence and ability to grow in 1% calf serum, indicating that they were nontransformed even though they still expressed p185 oncoprotein. The tyrosine residues of p185 in these two revertants were underphosphorylated, which may have contributed to their nontransformed status. Also, the p185 oncoprotein lacked significant tyrosine kinase activity. In addition, these revertants also resisted transformation by neu and several additional oncogenes (H-ras, N-ras, v-mos, v-abl, and v-fos) as determined by focus forming assays. These results indicated that we had successfully developed, from neu transformed cells, revertants which exhibited defective tyrosine phosphorylation and kinase activity of the neu oncoprotein. The results also suggested that neu and several other oncogenes may share common elements in their pathways for the induction of cellular transformation. ^
Resumo:
We designed and synthesized a novel daunorubicin (DNR) analogue that effectively circumvents P-glycoprotein (P-gp)-mediated drug resistance. The fully protected carbohydrate intermediate 1,2-dibromoacosamine was prepared from acosamine and effectively coupled to daunomycinone in high yield. Deprotection under alkaline conditions yielded 2$\sp\prime$-bromo-4$\sp\prime$-epidaunorubicin (WP401). The in vitro cytotoxicity and cellular and molecular pharmacology of WP401 were compared with those of DNR in a panel of wild-type cell lines (KB-3-1, P388S, and HL60S) and their multidrug-resistant (MDR) counterparts (KB-V1, P388/DOX, and HL60/DOX). Fluorescent spectrophotometry, flow cytometry, and confocal laser scanning microscopy were used to measure intracellular accumulation, retention, and subcellular distribution of these agents. All MDR cell lines exhibited reduced DNR uptake that was restored, upon incubation with either verapamil (VER) or cyclosporin A (CSA), to the level found in sensitive cell lines. In contrast, the uptake of WP401 was essentially the same in the absence or presence of VER or CSA in all tested cell lines. The in vitro cytotoxicity of WP401 was similar to that of DNR in the sensitive cell lines but significantly higher in resistant cell lines (resistance index (RI) of 2-6 for WP401 vs 75-85 for DNR). To ascertain whether drug-mediated cytotoxicity and retention were accompanied by DNA strand breaks, DNA single- and double-strand breaks were assessed by alkaline elution. High levels of such breaks were obtained using 0.1-2 $\mu$g/mL of WP401 in both sensitive and resistant cells. In contrast, DNR caused strand breaks only in sensitive cells and not much in resistant cells. We also compared drug-induced DNA fragmentation similar to that induced by DNR. However, in P-gp-positive cells, WP401 induced 2- to 5-fold more DNA fragmentation than DNR. This increased DNA strand breakage by WP401 was correlated with its increased uptake and cytotoxicity in these cell lines. Overall these results indicate that WP401 is more cytotoxic than DNR in MDR cells and that this phenomenon might be related to the reduced basicity of the amino group and increased lipophilicity of WP401. ^
Resumo:
During vertebrate embryogenesis, cells from the paraxial mesoderm coalesce in a rostral-to-caudal progression to form the somites. Subsequent compartmentalization of the somites yields the sclerotome, myotome and dermatome, which give rise to the axial skeleton, axial musculature, and dermis, respectively. Recently, we cloned a novel basic-Helix-Loop-Helix (bHLH) protein, called scleraxis, which is expressed in the sclerotome, in mesenchymal precursors of bone and cartilage, and in connective tissues. This dissertation focuses on the cloning, expression and functional analysis of a bHLH protein termed paraxis, which is nearly identical to scleraxis within the bHLH region but diverges in both its amino and carboxyl termini. During the process of mouse embryogenesis, paraxis transcripts are first detected at about day 7.5 post coitum within the primitive mesoderm lying posterior to the head and heart primordia. Subsequently, paraxis expression progresses caudally through the paraxial mesoderm, immediately preceding somite formation. Paraxis is expressed at high levels in newly formed somites before the first detectable expression of the myogenic bHLH genes, and as the somite becomes compartmentalized, paraxis becomes downregulated within the myotome.^ To determine the function of paraxis during mammalian embryogenesis, mice were generated with a null mutation in the paraxis locus. Paraxis null mice survived until birth, but exhibited severe foreshortening along the anteroposterior axis due to the absence of vertebrae caudal to the midthoracic region. The phenotype also included axial skeletal defects, particularly shortened bifurcated ribs which were detached from the vertebral column, fused vertebrae and extensive truncation and disorganization caudal to the hindlimbs. Mutant neonates also lacked normal levels of trunk muscle and exhibited defects in the dermis as well as the stratification of the epidermis. Analysis of paraxis -/- mutant embryos has revealed a failure of the somites to both properly epithelialize and compartmentalize, resulting in defects in somite-derived cell lineages. These results suggest that paraxis is an essential component of the genetic pathway regulating somitogenesis. ^
Resumo:
An important question in developmental biology is how embryonic cell types are derived from a fertilized egg. To address this question, this thesis investigates the mechanisms by which the aboral ectoderm-specific Spec2a gene is spatially and temporally regulated during sea urchin embryogenesis. The Spec2a gene of the sea urchin Strongylocentratus purpuratus has served as a valuable maker to understand the basis of lineage-specific gene activation and the role of transcription factors in cell fate specification. The hypothesis is that transcription factors responsible for cell type-specific gene activation are key components in the initial cell specification step. The Spec2a gene, which encodes a small cytosolic calcium-binding protein, is expressed exclusively in aboral ectoderm cell lineages. The 1516-bp control region of the Spec2a gene contains a 188-bp enhancer element required for temporal activation and aboral ectoderm/mesenchyme cell expression, while an unidentified element upstream of the enhancer represses expression in mesenchyme cells. Using an enhancer activation assay, combined with site-directed mutagenesis, I showed that three TAATCC/T sites within the enhancer are responsible for enhancer activity. Mutagenizing these sites and a fourth one just upstream abolished all activity from the Spec2a control region. A 77-bp DNA fragment from the Spec2a enhancer containing two of the TAATCC/T sites is sufficient for aboral ectoderm/mesenchyme cell expression. A cDNA encoding SpOtx, an orthodenticle-related protein, was cloned from S. purpuratus and shown to bind with high affinity to the TAATCC/T sequences within the Spec2a control region. SpOtx transcripts were found initially in all cells of the cleaving embryo, but they gradually became restricted to oral ectoderm and endoderm cells, suggesting that SpOtx might play a role in the initial temporal activation of the Spec2a gene and most likely has additional functions in the developing embryo. To reveal the broader biological functions of SpOtx, I injected SpOtx mRNA into living sea urchin eggs to determine what effects overexpressing the SpOtx protein might have on embryo development. SpOtx mRNA-injected embryos displayed dramatic alterations in development. Instead of developing into pluteus larvae with 15 different cell types, uniform epithelia balls were formed. These balls consisted of a thin layer of squamous cells with short cilia highly reminiscent of aboral ectoderm. Immunohistochemical staining and RT-PCR demonstrated that the SpOtx-injected embryoids expressed aboral ectoderm markers uniformly, but showed very weak or no expression of markers for non-aboral ectoderm cell types. These data strongly suggested that overexpression of SpOtx redirected the normal fate of non-aboral ectoderm cells to that of aboral ectoderm. These results show that SpOtx is involved in aboral ectoderm differentiation by activating aboral ectoderm-specific genes and that modulating its expression can lead to changes in cell fate. ^
Resumo:
The aim of my project is to examine the mechanisms of cell lineage-specific transcriptional regulation of the two type I collagen genes by characterizing critical cis-acting elements and trans-acting factors. I hypothesize that the transcription factors that are involved in the cell lineage-specific expression of these genes may have a larger essential role in cell lineage commitment and differentiation. I first examined the proximal promoters of the proα1(I) and the proα2(I) collagen genes for cell type-specific DNA-protein interactions, using in vitro DNaseI and in vivo DMS footprinting. These experiments demonstrated that the cis-acting elements in these promoters are accessible to ubiquitous DNA-binding proteins in fibroblasts that express these genes, but not in other cells that do not express these genes. I speculate that in type I collagen-expressing cells, cell type-specific enhancer elements facilitate binding of ubiquitous proteins to the proximal promoters of these genes. Subsequently, examination of the upstream promoter of the proα(I) collagen gene by transgenic mice experiments delineated a 117 bp sequence (-1656 to -1540 bp) as the minimum element required for osteoblast-specific expression. This 117 bp element contained two segments that appeared to have different functions: (1) the A-segment, which was necessary to obtain osteoblast-specific expression and (2) the C-segment, which was dispensable for osteoblast-specific expression, but was necessary to obtain high-level expression. In experiments to identify trans-acting factors that bind to the 117 bp element, I have demonstrated that the cell lineage-restricted homeodomain proteins, Dlx2, Dlx5 and mHOX, bound to the A-segment and that the ubiquitous transcription factor, Sp1, bound to the C-segment of this element. These results suggested a model where the binding of cell lineage-restricted proteins to the A-segment and of ubiquitous proteins to the C-segment of the 117 bp element of the proα1 (I) collagen gene activated this gene in osteoblasts. These results, combined with additional evidence that Dlx2, Dlx5 and mHOX are probably involved in osteoblast differentiation, support my hypothesis that the transcription factors involved in osteoblast-specific expression of type I collagen genes may have essential role in osteoblast lineage commitment and differentiation. ^
Resumo:
Researchers have historically emphasized the contribution of caspase-3 to apoptotic but not necrotic cell death, while calpain has been implicated primarily in necrosis and, to a lesser extent, in apoptosis. Activation of these proteases occurs in vivo following various CNS insults including ischemia. In addition, both necrotic and apoptotic cell death phenotypes are detected following ischemia. However, the contributions of calpain and caspase-3 to apoptotic and necrotic cell death phenotypes following CNS insults are relatively unexplored. To date, no study has examined the concurrent activation of calpain and caspase-3 in necrotic and apoptotic cell death phenotypes following any CNS insult. The present study employed oxygen-glucose deprivation (OGD) to determine the relative contributions of caspase-3 and calpain to apoptotic and necrotic cell death following OGD. Experiments characterized a model of OGD by evaluating cell viability and characterizing the cell death phenotypes following OGD in primary septo-hippocampal co-cultures. Furthermore, cell markers (NeuN and MAP2 or GFAP) assessed the effects of OGD on neuronal and astroglial viability, respectively. In addition, calpain and caspase-3 mediated proteolysis of α-spectrin was examined using Western blot techniques. Activation of these proteases in individual cells phenotypically characterized as apoptotic and necrotic was also evaluated by using antibodies specific for calpain or caspase-3 mediated breakdown products to α-spectrin. Administration of appropriate caspase-3 and calpain inhibitors also examined the effects of protease inhibition on cell death. OGD produced prominent expression of apoptotic cell death phenotypes primarily in neurons, with relatively little damage to astroglia. Although Western blot data suggested greater proteolysis of α-spectrin by calpain than caspase-3, co-activation of both proteases was usually detected in cells exhibiting apoptotic or necrotic cell death phenotypes. While inhibition of calpain and caspase-3 activity decreased LDH release following OGD, it was not clear whether this effect was also associated with a decrease in cell death and the appearance of apoptotic cell death phenotypes. These data demonstrate that both calpain and caspase-3 contribute to the expression of apoptotic cell death phenotypes following OGD, and that calpain could potentially have a larger role in the expression of apoptotic cell death than previously thought. ^
Resumo:
Multiple sclerosis (MS) is the most common autoimmune disease of the central nerve system and Guillain Barré Syndrome (GBS) is an inflammatory neuropathy involving the peripheral nerves. Anti-myelin immunoglobins may play a role in the demyelination processes of the both diseases. Sulfatide is an abundant glycolipid on myelin and is a candidate target antigen for disease related autoantibodies. The objective of this study was to characterize anti-sulfatide antibodies and compare antibodies from GBS and MS patients with fetal antibodies. Our hypothesis is that some B cells producing disease-associated autoantibodies are derived from or related to B cells of the fetal repertoire. Here we report that reactivity of plasma IgM against sulfatide was elevated in twelve MS patients compared with twelve normal subjects. This result implies that anti-sulfatide antibodies are disease-related. A total of sixteen human B lymphocyte clones producing anti-sulfatide autoantibodies were isolated from MS patients, GBS patients and a human fetus. Seven of the clones were from three MS patients, four of the clones were from three GBS patients and five were from the spleen of a twenty-week human fetus. Sequences have been obtained for the heavy and light chain variable regions (VDJ and VJ regions) of all of the anti-sulfatide immunoglobulins. Seven of the sixteen antibodies used VH3 for the variable region gene of the heavy chain consistent with the rate of VH3 usage in randomly selected B cells. Somatic mutations were significantly more frequent in the patient antibodies than in the fetus and somatic mutations in CDR's (Complementarity Determining Region) were significantly more frequent than in framework regions. No significant difference was found between patients and fetus in length of VH CDRIII. However, it is reported that antibodies from randomly selected normal adult B cells have longer CDRIII lengths than those of the fetus (Sanz I, 1991 Journal of Immunology Sep 1;147(5):1720-9). Our results are consistent with derivation of the precursors of B cells producing these autoantibodies from B cells related to those of the fetal repertoire. These findings are consistent with a model in which quiescent B cells from clones produced early in development undergo proliferation in dysregulated disease states, accumulating somatic mutations and increasing in reactivity toward self-antigens. ^ Epitope mapping and molecular modeling were done to elucidate the relationships between antibody structure and binding characteristics. The autoantibodies were tested for binding activity to three different antigens: sulfatide, galactoceramide and ceramide. Molecular modeling suggests that antibodies with positive charge surrounded by or adjacent to hydrophobic groups in the binding pocket bind to the head of sulfatide via the sulfate group through electrostatic interactions. However, the antibodies with hydrophobic groups separated from positive charges appear to bind to the hydrophobic tail of sulfatide. This observation was supported by a study of the effect of NaCl concentration on antigen binding. The result suggested that electrostatic interactions played a major role in sulfate group binding and that hydrophobic interactions were of greater importance for binding to the ceramide group. Our three-dimensional structure data indicated that epitope specificity of these antibodies is more predictable at the level of tertiary than primary structure and suggested positive selection based on structure occurred in the. formation of those autoantibodies. ^
Resumo:
Skin cancer is the most prevalent form of neoplasia, with over one million newcases diagnosed this year. UV radiation is a ubiquitous environmental agent that induces skin cancer. In addition to its carcinogenic effect, UV radiation also suppresses cell-mediated immune responses. This immune suppression is not only observed at the site of irradiation, but UV radiation also induces systemic immune suppression. Since UV radiation has a limited ability to penetrate the skin, the question of the mechanism of this systemic immune suppression arises. A number of studies have suggested that UV radiation induce systemic effects through the production of immunoregulatory cytokines, such as IL-4 and IL-10. These cytokines affect the immune response by altering systemic antigen presentation, specifically by suppressing the activation of Th1 cells while allowing the activation of Th2 cells. Because IL-12 is an important regulator of Th1 cell activation, we tested the hypothesis that administration of IL-12 could overcome UV-induced immune suppression. ^ The studies presented here are divided into dime specific aims. In the first specific aim, the ability of IL-12 to overcome UV-induced immune suppression was examined. IL-12 could overcome UV-induced immune suppression as well as prevent the generation of and neutralize the activity of preformed suppressor cells induced by UV radiation. In the second specific aim, the mechanism by which IL-12 overcomes UV-induced immune suppression was examined. IL-12 overcame UV-induced immune suppression by blocking the production of immunoregulatory cytokines such as IL-4, IL-10 and TNF-α. In the third specific aim, the effect of UV radiation on antigen presentation was investigated. UV radiation was found to decrease the production of biologically active IL-12. In addition, UV also increased the production of IL-12p40 homodimer, an antagonist of IL-12p70 heterodimer. This result suggests that IL-12 may have a dual role in the immune suppression induced by, UV radiation. On one hand the biologically active IL-12p70 heterodimer blocks UV-induced immune suppression. In contrast, IL-12p40 homodimer may mediate the suppressive effect of UV radiation. This paradox indicates that IL-12 may have a greater regulatory role in the immune response than was previously suspected. ^
Resumo:
The promyelocytic leukemia protein PML is a growth suppressor essential for induction of apoptosis by diverse apoptotic stimuli. The mechanism by which PML regulates cell death remains unclear. In this study we found that ectopic expression of PML potentiates cell death in the TNFα-resistant tumor line U2OS and significantly sensitized these cells to apoptosis induced by TNFα in a p53-independent manner. Our study demonstrated that both PML and PML/TNFα-induced cell death are associated with DNA fragmentation, activation of caspase-3, -7, -8, and degradation of DFF/ICAD. Furthermore, we found that PML-induced and PML/TNFα-induced cell death could be blocked by the caspase-8 inhibitors crmA and c-FLIP, but not by Bcl-2, the inhibitor of mitochondria-mediated apoptotic pathway. These findings indicate that this cell death event is initiated through the death receptor-dependent apoptosis pathway. Our study further showed that PML recruits NF-kappa B (NF-κB) to the PML nuclear body, blocks NF-κB binding to its cognate enhancer, and represses its transactivation function with the C-terminal region. Therefore PML inhibits the NF-κB survival pathway. Overexpression of NF-κB rescued cell death induced by PML and PML/TNFκ. These results imply that PML is a functional repressor of NF-κB. This notion was further supported by the finding that the PML−/− mouse embryo fibroblasts (MEFs) are more resistant than the wild-type MEFs to TNFκ-induced apoptosis. In conclusion, our studies convincingly demonstrated that PML potentiates cell death through inhibition of the NF-κB survival pathway. Activation of NF-κB frequently occurs during oncogenesis. Our study here suggests that a loss of PML function enhances the NF-κB survival pathway and this event may contribute to tumorigenesis. ^
Resumo:
The p21-activated kinase, Shk1, is an essential serine/threonine kinase required for normal cell polarity, proper mating response, and hyperosmotic stress response, in the fission yeast, Schizosaccharomyces pombe. This study has established a novel role for Shk1 as a microtubule regulator in fission yeast and, in addition, characterized a potential biological substrate of Shk1. Cells defective in Shk1 function were found to exhibit malformed interphase and mitotic microtubules, are hypersensitive to the microtubule disrupting drug thiabendazole (TBZ), and are cold sensitive for growth. Microtubule disruption by TBZ results in a significant reduction of Shk1 kinase activity, which is restored after cells are released from the drug, thus providing a correlation between Shk1 kinase activity and active microtubule polymerization. Consistent with a role for Shk1 as a microtubule regulator, GFP-Shk1 fusion proteins localize to interphase microtubules and mitotic microtubule spindles. Furthermore, loss of Tea1, a presumptive microtubule regulator in fission yeast, exacerbates the growth and microtubule defects of cells deficient in Shk1 function, and results in illicit Shk1 localization. Moreover, loss of the Cdc2 inhibitory kinase Wee1, which has been implicated as a mediator of the Shk1 pathway, leads to significant microtubule defects. Intriguingly, Wee1 protein levels are markedly reduced both by partial loss of Shk1 function and by treatment with TBZ. These results suggest that Shk1 is required for proper regulation of microtubule dynamics in fission yeast and may interact with Tea1 and Wee1 in this regulatory process. ^ To further understand Shk1 function in fission yeast, a yeast two-hybrid screen for proteins that interact with the Shk1 catalytic domain was performed. This screen led to the identification of a novel protein, Skb10 (for S&barbelow;hk1 k&barbelow;inase b&barbelow;inding protein 10). Coprecipitation experiments demonstrated that Skb10 associates with Shk1 in S. pombe cells. (Abstract shortened by UMI.) ^
Resumo:
Histone acetylation is a central event in transcriptional activation. The importance of this modification in mammalian development is highlighted by knockout studies that revealed loss of the histone acetyltransferases GCN5, p300, or CBP results in embryonic lethality. Furthermore, early embryogenesis is sensitive to the dosage of p300 and CBP since double p300 +/−CBP+/− heterozygotes die in utero, although either single heterozygote survives. PCAF and GCN5 physically interact with p300 and CBP in vitro. To determine whether these two groups of HATs interact functionally in vivo, we created mice lacking one or more allele of p300, GCN5 or PCAF. As expected, we found that mice heterozygous for any one of these null alleles are viable. The majority of GCN5 p300 double heterozygotes also survive to adulthood with no apparent abnormalities. However, a portion of these mice die prior to birth. These embryos are developmentally stunted and exhibit increased apoptosis compared to wild type or single GCN5 or p300 heterozygous littermates at E8.5. Tissue specification is unaffected in these embryos but organ formation is compromised. In contrast, no abnormalities were observed in mice harboring mutations in both PCAF and p300 , emphasizing the specificity of HAT functions in mammalian development. ^ Since GCN5 null embryos die early in embryogenesis because of a marked increase in apoptosis, studies of its function and mechanism in late development and in tissue specific differentiation are precluded. Here, we also report the establishment of a GCN5 null embryonic stem cell line and a conditional floxGCN5 mouse line, which will serve as powerful genetic tools to examine in depth the function of GCN5 in mammalian development and in adult tissues. ^
Resumo:
Cell growth and differentiation are complex and well-organized processes in which cells respond to stimuli from the environment by carrying out genetic programs. Transcription factors with helix-loop-helix (HLH) motif play critical roles in controlling the expression of genes involved in lineage commitment, cell fate determination, proliferation and tumorigenesis. This study has examined the roles of GCIP (CCNDBP1) in cell differentiation and tumorigenesis. GCIP is a recently identified HLH-leucine zipper protein without a basic region like the Id family of proteins. However, GCIP shares little sequence homology with the Id proteins and has domains with high acidic amino acids and leucine-rich regions following the HLH domain like c-Myc. Here we firstly demonstrate that GCIP is a transcription regulator related to muscle differentiation program. Overexpression of GCIP in C2C12 cells not only promotes myotube formation but also upregulates myogenic differentiation biomarkers, including MHC and myogenein. On the other hand, our finding also suggests that GCIP is a potential tumor suppressor related to cell cycle control. Expression of GCIP was significantly down-regulated in colon tumors as compared to normal colon tissues. Overexpression of GCIP in SW480 colon cancer cell line resulted in a significant inhibition on tumor cell colony formation on soft agar assays while silencing of GCIP expression by siRNA can promote cell proliferation and colony formation. In addition, results from transgenic mice specifically expressing GCIP in liver also support the idea that GCIP is involved in the early stage of hepatocarcinogenesis and decreased susceptibility to chemical hepatocarcinogenesis. ^