58 resultados para chitin binding activity
Resumo:
The nine membrane-bound isoforms of adenylyl cyclase (AC), via synthesis of the signaling molecule cyclic AMP (cAMP), are involved in many isoform specific physiological functions. Decreasing AC5 activity has been shown to have potential therapeutic benefit, including reduced stress on the heart, pain relief, and attenuation of morphine dependence and withdrawal behaviors. However, AC structure is well conserved, and there are currently no isoform selective AC inhibitors in clinical use. P-site inhibitors inhibit AC directly at the catalytic site, but with an uncompetitive or noncompetitive mechanism. Due to this mechanism and nanomolar potency in cell-free systems, attempts at ligand-based drug design of novel AC inhibitors frequently use P-site inhibitors as a starting template. One small molecule inhibitor designed through this process, NKY80, is described as an AC5 selective inhibitor with low micromolar potency in vitro. P-site inhibitors reveal important ligand binding “pockets” in the AC catalytic site, but specific interactions that give NKY80 selectivity are unclear. Identifying and characterizing unique interactions between NKY80 and AC isoforms would significantly aid the development of isoform selective AC inhibitors. I hypothesized that NKY80’s selective inhibition is conferred by AC isoform specific interactions with the compound within the catalytic site. A structure-based virtual screen of the AC catalytic site was used to identify novel small molecule AC inhibitors. Identified novel inhibitors are isoform selective, supporting the catalytic site as a region capable of more potent isoform selective inhibition. Although NKY80 is touted commercially as an AC5 selective inhibitor, its characterization suggests strong inhibition of both AC5 and the closely related AC6. NKY80 was also virtually docked to AC to determine how NKY80 binds to the catalytic site. My results show a difference between NKY80 binding and the conformation of classic P-site inhibitors. The selectivity and notable differences in NKY80 binding to the AC catalytic site suggest a catalytic subregion more flexible in AC5 and AC6 that can be targeted by selective small molecule inhibitors.
Resumo:
$\beta$-adrenergic receptor-mediated activation of adenylate cyclase exhibits an agonist-specific separation between the dose/response curve (characterized by the EC$\sb{50}$) and the dose/binding curve (characterized by the K$\sb{\rm d}$). Cyclase activity can be near-maximal when receptor occupancy is quite low (EC$\sb{50}$ $\ll$ K$\sb{\rm d}$). This separation between the binding and response curves can be explained by the assumption that the rate of cyclase activation is proportional to the concentration of agonist-bound receptors, since the receptor is mobile and can activate more than one cyclase (the Collision Coupling Model of Tolkovsky and Levitzki). Here it is established that agonist binding frequency plays an additional role in adenylate cyclase activation in S49 murine lymphoma cells. Using epinephrine (EC$\sb{50}$ = 10 nM, K$\sb{\rm d}$ = 2 $\mu$M), the rate of cyclase activation decreased by 80% when a small (1.5%) receptor occupancy was restricted (by addition of the antagonist propranolol) to a small number (1.5%) of receptors rather than being proportionally distributed among the cell's entire population of receptors. Thus adenylate cyclase activity is not proportional to receptor occupancy in all circumstances. Collisions between receptor and cyclase pairs apparently occur a number of times in rapid sequence (an encounter); the high binding frequency of epinephrine ensures that discontiguous regions of the cell surface experience some period of agonist-bound receptor activity per small unit time minimizing "wasted" collisions between activated cyclase and bound receptor within an encounter. A contribution of agonist binding frequency to activation is thus possible when: (1) the mean lifetime of the agonist-receptor complex is shorter than the mean encounter time, and (2) the absolute efficiency (intrinsic ability to promote cyclase activation per collision) of the agonist-receptor complex is high. These conclusions are supported by experiments using agonists of different efficiencies and binding frequencies. These results are formalized in the Encounter Coupling Model of adenylate cyclase activation, which takes into explicit account the agonist binding frequency, agonist affinity for the $\beta$-adrenergic receptor, agonist efficiency, encounter frequency and the encounter time between receptor and cyclase. ^
Resumo:
The current studies were undertaken to examine the effect of retinoic acid (RA)-induced differentiation of the murine embryonal carcinoma cell line, F-9, on the glycosylation of specific cellular glycoproteins and on the expression of two members of the family of endogenous lactoside-binding lectins. It was found that RA-induced differentiation of these cells into cells with the properties of primitive endoderm results in the increased fucosylation of 3 glycoproteins with molecular weights of 175 (gp175), 250 (gp250), and 400 (pg400) kDa. These three fucose-containing glycoproteins can be considered as new markers of differentiation in this system. The increased fucosylation of these glycoproteins preceded the 3-fold increase in fucosyltransferase (FT) activity that was seen upon RA-induced differentiation of these cells, indicating that an increase in fucosyltransferase activity alone cannot explain the increased fucosylation of these glycoproteins.^ The effect of RA and Ch55, a chalcone carboxylic acid with retinoid-like properties, induced differentiation of a variety of murine embryonal carcinoma cell lines on the activities of both FT and sialyltransferase (ST) was examined. The effect of differentiation on the activities of both glycosyltransferases was modulated and most probably is dependent upon the differentiation pathway that is triggered by the retinoids for each of the embryonal carcinoma cell lines.^ Two glycoproteins, Lysosomal Associated Membrane Glycoproteins 1 and 2 (LAMP-1 and LAMP-2) were examined in more detail during the course of RA-induced differentiation of F-9 cells. Both the levels and glycosylation of both glycoproteins are increased following differentiation of these cells. Differentiation results in the increased binding of $\sp{125}$l-labelled L-phytohemagglutinin to bind to LAMP-1 which indicates increased GlcNAc $\beta$1,6 branching of the oligosaccharide side chains.^ We found that RA-induced differentiation of F-9 cells results in the decreased expression of the 34 kDa lectin 24 h after addition of the retinoid to the medium. Additionally, 48 h of RA-treatment results in the increased expression of the 14.5 kDa lectin. By indirect immunofluorescence we were able to colocalize the 14.5 kDa lectin and laminin which suggests that laminin may be a ligand for the lectin in the F-9 cells. (Abstract shortened with permission of author.) ^
Resumo:
A previous study in our lab has shown that the transforming neu oncogene ($neu\sp\*$) was able to initiate signals that lead to repression of the neu promoter activity. Further deletion mapping of the neu promoter identified that the GTG element (GGTGGGGGGG), located between $-$243 and $-$234 relative to the translation initiation codon, mediates such a repression effect. I have characterized the four major protein complexes that interact with this GTG element. In situ UV-crosslinking indicated that each complex contains proteins of different molecular weights. The slowest migrating complex (S) contain Sp1 or Sp1-related proteins, as indicated by the data that both have similar molecular weights, similar properties in two affinity chromatographies, and both are antigenically related in gel shift analysis. Methylation protection and interference experiments demonstrated these complexes bind to overlapping regions of the GTG element. Mutations within the GTG element that either abrogate or enhance complex S binding conferred on the neu promoter with lower activity, indicating that positive factors other than Sp1 family proteins also contribute to neu promoter activity. A mutated version (mutant 4) of the GTG element, which binds mainly the fastest migrating complex that contains a very small protein of 26-kDa, can repress transcription when fused to a heterologous promoter. Further deletion and mutation studies suggested that this GTG mutant and its binding protein(s) may cooperate with some DNA element within a heterologous promoter to lock the basal transcription machinery; such a repressor might also repress neu transcription by interfering with the DNA binding of other transactivators. Our results suggest that both positive and negative trans-acting factors converge their binding sites on the GTG element and confer combinatorial control on the neu gene expression. ^
Resumo:
Many eukaryotic promoters contain a CCAAT element at a site close ($-$80 to $-$120) to the transcription initiation site. CBF (CCAAT Binding Factor), also called NF-Y and CP1, was initially identified as a transcription factor binding to such sites in the promoters of the Type I collagen, albumin and MHC class II genes. CBF is a heteromeric transcription factor and purification and cloning of two of the subunits, CBF-A and CBF-B revealed that it was evolutionarily conserved with striking sequence identities with the yeast polypeptides HAP3 and HAP2, which are components of a CCAAT binding factor in yeast. Recombinant CBF-A and CBF-B however failed to bind to DNA containing CCAAT sequences. Biochemical experiments led to the identification of a third subunit, CBF-C which co-purified with CBF-A and complemented the DNA binding of recombinant CBF-A and CBF-B. We have recently isolated CBF-C cDNAs and have shown that bacterially expressed purified CBF-C binds to CCAAT containing DNA in the presence of recombinant CBF-A and CBF-B. Our experiments also show that a single molecule each of all the three subunits are present in the protein-DNA complex. Interestingly, CBF-C is also evolutionarily conserved and the conserved domain between CBF-C and its yeast homolog HAP5 is sufficient for CBF-C activity. Using GST-pulldown experiments we have demonstrated the existence of protein-protein interaction between CBF-A and CBF-C in the absence of CBF-B and DNA. CBF-B on other hand, requires both CBF-A and CBF-C to form a ternary complex which then binds to DNA. Mutational studies of CBF-A have revealed different domains of the protein which are involved in CBF-C interaction and CBF-B interaction. In addition, CBF-A harbors a domain which is involved in DNA recognition along with CBF-B. Dominant negative analogs of CBF-A have also substantiated our initial observation of assembly of CBF subunits. Our studies define a novel DNA binding structure of heterotrimeric CBF, where the three subunits of CBF follow a particular pathway of assembly of subunits that leads to CBF binding to DNA and activating transcription. ^
Resumo:
The Retinoblastoma tumor suppressor gene (RB) plays a role in a variety of human cancers. Experimental analyses have indicated that the protein product of the RB gene (pRb) plays a role in cell cycle regulation, and that this protein is required in cellular differentiation, senescence, and cell survival. pRb function is dependent on its ability to bind to cellular factors. There are multiple protein binding domains within pRb. Mutations within these domains which eliminate the ability of pRb to bind its targets result in loss of function. Loss of pRb function leads to tumorigenesis, although uncontrolled cellular proliferation is not a universal response to pRb inactivation. The ultimate response to the loss of pRb is influenced by both the genetic and epigenetic environments. Targeted disruption of RB in mice results in embryonic lethality, demonstrating the requirement for functional pRb in development. Close examination of various tissues from the embryos which lack wildtype RB shows problems in differentiation as well as showing induction of apoptosis. Although disruption of RB has provided useful information, complete inactivation of a gene precludes the possibility of discovering the functions that separate domains may have within the system. Creation of a dominant negative mutant by domain deletion whose phenotype is expressed in the presence of the wildtype may provide information about the intermediate functions of the protein. In addition, tissue specific targeting of a dominant negative mutant of pRb allows for comprehensive analysis of pRb function in organogenesis. In this thesis, a series of RB deletion mutants were created and tested for dominant negative activity as well as cellular localization. A tissue culture assay for dominant negative activity was developed which screens for the phenotype of apoptosis due to loss of pRb function. Two mutants from this series scored positive for dominant negative activity in this assay. The effect of these mutants within the assay environment can be explained by a model in which pRb acts as a facilitator of cell fate pathway decisions. ^
Resumo:
The present study was designed to determine the potential anticarcinogenic activity of naturally occurring coumarins and their mechanism of action. The results indicated that several naturally occurring coumarins including bergamottin, coriandrin, imperatorin, isopimpinellin, and ostruthin, to which humans are routinely exposed in the diet, were effective inhibitors and/or inactivators of CYP1A1-mediated ethoxyresorufin-O-dealkylase (EROD) or CYP2B1-mediated pentoxyresorufin-O-dealkylase (PROD) in mouse liver microsomes. In addition, bergamottin and corandrin were also found to be inhibitors of purified human P450 1A1 in vitro. Further studies with coriandrin revealed that this compound was a mechanism-based inactivator of P450 1A1 and covalently bound to the P450 1A1 apoprotein. In cultured mouse keratinocytes, bergamottin and coriandrin effectively inhibited the B(a) P metabolism and significantly decreased covalent binding of B(a) P and DMBA to keratinocyte DNA and anti-diol-epoxide-DNA adducts derived from both B(a) P and DMBA in keratinocytes. The data from in vivo experiments showed that bergamottin and coriandrin were potent inhibitors of covalent binding of B (a) P to epidermal DNA and the formation of (+) anti BPDE-DNA adduct, whereas imperatorin and isopimpinellin were more potent inhibitors of covalent binding of DMBA to epidermal DNA. The ability of coumarins to inhibit covalent binding of B (a) P to DNA in mouse epidermis was positively correlated with their inhibitory effect P450 1A1 in vitro, while the inhibitory effect of coumarins on covalent binding of DMBA to epidermal DNA was positively correlated with their inhibitory effects on P450 2B1 and negatively to their inhibitory activity toward P450 1A1. The data from tumor experiments indicated that bergamottin, ostruthin, and coriandrin inhibited tumor initiation by B (a) P in a two-stage carcinogenesis protocol. Bergamottin was most effective in this regard and produced a dose dependent inhibition of papilloma formation in these experiments. In addition, imperatorin was an effective inhibitor of skin tumorigenesis induced by DMBA in SENCAR mouse skin using both a two-stage and a complete carcinogenesis protocol. At dose levels higher than those effective against DMBA, imperatorin also inhibited tumor initiation by B (a) P. The results to date demonstrate that several naturally occurring coumarins possess the ability to block tumor initiation and tumorigenesis by PAHs such as B (a) P and DMBA through inhibition of the P450s involved in the metabolic activation of these hydrocarbons. A working model for the involvement of specific P450s in the metabolic activation of these two PAHs was proposed. ^
Resumo:
Contraction of cardiac muscle is regulated through the Ca2+ dependent protein-protein interactions of the troponin complex (Tn). The critical role cardiac troponin C (cTnC) plays as the Ca2+ receptor in this complex makes it an attractive target for positive inotropic compounds. In this study, the ten Met methyl groups in cTnC, [98% 13C ϵ]-Met cTnC, are used as structural markers to monitor conformational changes in cTnC and identify sites of interaction between cTnC and cardiac troponin I (cTnI) responsible for the Ca2+ dependent interactions. In addition the structural consequences that a number of Ca2+-sensitizing compounds have on free cTnC and the cTnC·cTnI complex were characterized. Using heteronuclear NMR experiments and monitoring chemical shift changes in the ten Met methyl 1H-13C correlations in 3Ca2+ cTnC when bound to cTnI revealed an anti-parallel arrangement for the two proteins such that the N-domain of cTnI interacts with the C-domain of cTnC. The large chemical shifts in Mets-81, -120, and -157 identified points of contact between the proteins that include the C-domain hydrophobic surface in cTnC and the A, B, and D helical interface located in the regulatory N-domain of cTnC. TnI association [cTnI(33–80), cTnI(86–211), or cTnI(33–211)] was found also to dramatically reduce flexibility in the D/E central linker of cTnC as monitored by line broadening in the Met 1H- 13C correlations of cTnC induced by a nitroxide spin label, MTSSL, covalently attached to cTnC at Cys 84. TnI association resulted in an extended cTnC that is unlike the compact structure observed for free cTnC. The Met 1H-13C correlations also allowed the binding characteristics of bepridil, TFP, levosimendan, and EMD 57033 to the apo, 2Ca2+, and Ca2+ saturated forms of cTnC to be determined. In addition, the location of drug binding on the 3Ca2+cTnC·cTnI complex was identified for bepridil and TFP. Use of a novel spin-labeled phenothiazine, and detection of isotope filtered NOEs, allowed identification of drug binding sites in the shallow hydrophobic cup in the C-terminal domain, and on two hydrophobic surfaces on N-regulatory domain in free 3Ca2+ cTnC. In contrast, only one N-domain drug binding site exists in 3Ca2+ cTnC·cTnI complex. The methyl groups of Met 45, 60 and 80, which are grouped in a hydrophobic patch near site II in cTnC, showed the greatest change upon titration with bepridil or TFP, suggesting that this is a critical site of drug binding in both free cTnC and when associated with cTnI. The strongest NOEs were seen for Met-60 and -80, which are located on helices C and D, respectively, of Ca2+ binding site II. These results support the conclusion that the small hydrophobic patch which includes Met-45, -60, and -80 constitutes a drug binding site, and that binding drugs to this site will lead to an increase in Ca2+ binding affinity of site II while preserving maximal cTnC activity. Thus, the subregion in cTnC makes a likely target against which to design new and selective Ca2+-sensitizing compounds. ^
Resumo:
Sox9 is a transcription factor required for chondrocyte differentiation and cartilage formation. In an effort to identify SOX9 interacting protein(s), we screened a chondrocyte cDNA library with a modified yeast two-hybrid method, Son of Sevenless (SOS) recruitment system (SRS). The catalytic subunit of cyclic AMP-dependent protein kinase A (PKA-Cα) and a new long form of c-Maf transcription factor (Lc-Maf) were found to interact specifically with SOX9. We showed here that two PKA phosphorylation consensus sites of SOX9 could be phosphorylated by PKA in vitro as well as in vivo. PKA phosphorylation of SOX9 increases its DNA binding and transcriptional activities on a Col2a1 chondrocyte-specific enhancer. Mutations of these two PKA phosphorylation sites markedly decreased the activation of SOX9 by PKA. ^ To test whether parathyroid hormone-related peptide (PTHrP) signaling results in SOX9 phosphorylation, we generated a phosphospecific antibody that specifically recognizes SOX9 that is phosphorylated at serine 181 (S 181) one of the two consensus PKA phosphorylation sites. Addition of PTHrP to COS7 cells cotransfected with SOX9 and PTH/PTHrP receptor strongly increased phosphorylation of SOX9 at S181; this phosphorylation was blocked by a PKA-specific inhibitor. In similar experiments we showed that PTHrP increased the activity of a SOX9-dependent Col2a1 enhancer. This increase in activity was abolished when a SOX9 mutant was used containing serine-to-alanine substitution in the two consensus PKA phosphorylation sites of SOX9. Using our phosphospecific SOX9 antibody we showed by immunohistochemistry of mouse embryos that Sox9 phosphorylated at S181 was localized almost exclusively in the pre-hypertrophic zone of the growth plate, an area corresponding to the major site of expression of PTH/PTHrP receptor. In contrast, no phosphorylation of Sox9 at S181 was detected in growth plates of PTH/PTHrP receptor null mutant mice. Sox9, regardless of phosphorylation state, was present in all chondrocytes of both genotypes except in hypertrophic chondrocytes. Thus, Sox9 is a target of PTHrP signaling and the PTHrP-dependent phosphorylation of SOX9 enhances its transcriptional activity. ^ In order to investigate the in vivo function of Sox9 phosphorylation by PKA, we are generating a mouse model of mutant Sox9 harboring point mutations in two PKA phosphorylation sites. Preliminary results indicated that heterozygous mice containing half amount of mutant Sox9 that can not be phosphorylated by PKA have normal skeletal phenotype and homozygous mice are being generated. ^ Lc-Maf encodes an extra ten amino acids at the carboxyl terminus of c-Maf and contains a completely different 3′ untranslated region. The interaction between SOX9 and Lc-Maf was further confirmed by co-immunoprecipitation and GST-pull down assays, which mapped the interacting domains of SOX9 to HMG DNA binding domain and that of Lc-Maf to basic leusine zipper motif. In situ hybridizations showed that RNA of Lc-Maf coexpressed with those of Sox9 and Col2a1 in areas of mesenchymal condensation during the early stages of mouse embryo development. A DNA binding site of Lc-Maf was identified at the 5′ part of a 48-bp Col2a1 enhancer element near the HMG binding site of SOX9. Lc-Maf and SOX9 synergistically activated a luciferase reporter plasmid containing a Col2al enhancer and increased the transcription of endogenous Col2a1 gene. In summary, Lc-Maf is the first identified SOX9-interating protein during chondrogenesis and may be an important activator of Col2a1 gene. ^
Resumo:
Exogenous ligands that bind to the estrogen receptor (ER) exhibit unique pharmacologies distinct from that observed with the endogenous hormone, 17β-estradiol (ED. Differential activity among ER ligands has been observed at the level of receptor binding, promoter interaction and transcriptional activation. Furthermore, xenoestrogens can display tissue-specific agonist activity on the cellular level, functioning as an agonist in one tissue and as an antagonist in another. That the same ligand, functioning through the same receptor, can produce differing agonist responses on the cellular level indicates that there are tissue-specific determinants of agonist activity. In these studies critical molecular determinants of agonist activity were characterized for several cell types. In the normal and neoplastic myometrium a proliferative response was dependent upon activation of AF2 of the ER, functioning as a determinant of agonism in this cell type. Progesterone receptor (PR) ligands transdominantly suppressed ER-mediated transcription and proliferation in uterine leiomyoma cells, indicating that ER/PR cross-talk can modulate agonist activity in a myometrial cell background. In the breast, the agonist response to ER ligands was investigated by employing a functional genomics approach to generate gene expression profiles. Treatment of breast cancer cells with the selective estrogen receptor modulator tamoxifen largely recapitulated the expression profile induced by treatment with the agonist E2, despite the well-characterized antiproliferative effects produced by tamoxifen in this cell type. While the expression of many genes involved in regulating cell cycle progression, including fos, myc, cdc25a, stk15 and cyclin A, were induced by both E2 and tamoxifen in breast cells, treatment with the agonist E2 specifically induced the expression of cyclin D1, fra-1 , and uracil DNA glycosylase. These results suggest that the inability of tamoxifen to transactivate expression of only a few key genes, functioning as cellular gatekeepers, prevent tamoxifen-treated breast cells from entering the cell cycle. Thus, the expression of these agonist-specific marker genes is a potential determinant of agonist activity at the cellular level in the breast. Collectively, studies in the breast and uterine myometrium have identified several mechanisms whereby ER ligands modulate ER-mediated signaling and provide insights into the biology of tissue-specific agonist activity in hormone-responsive tissues. ^
Resumo:
Infection by human immunodeficiency virus type 1 (HIV-1) is a multi-step process, and detailed analyses of the various events critical for productive infection are necessary to clearly understanding the infection process and identifying novel targets for therapeutic interventions. Evidence from this study reveals binding of the viral envelope protein to host cell glycosphingolipids (GSLs) as a novel event necessary for the orderly progression of the host cell-entry and productive infection by HIV-1. Data obtained from co-immunoprecipitation analyses and confocal microscopy showed that the ability of viral envelope to interact with the co-receptor CXCR4 and productive infection of HIV-1 were inhibited in cells rendered GSL-deficient, while both these activities were restored after reconstitution of the cells with specific GSLs like GM3. Furthermore, evidence was obtained using peptide-inhibitors of HIV-1 infection to show that binding of a specific region within the V3-loop of the envelope protein gp120 to the host cell GSLs is the trigger necessary for the CD4-bound gp120 to recruit the CXCR4 co-receptor. Infection-inhibitory activity of the V3 peptides was compromised in GSL-deficient cells, but could be restored by reconstitution of GSLs. Based on these findings, a revised model for HIV-1 infection is proposed that accounts for the established interactions between the viral envelope and host cell receptors while enumerating the importance of the new findings that fill the gap in the current knowledge of the sequential events for the HIV-1 entry. According to this model, post-CD4 binding of the HIV-1 envelope surface protein gp120 to host cell GSLs, mediated by the gp120-V3 region, enables formation of the gp120-CD4-GSL-CXCR4 immune-complex and productive infection. The identification of cellular GSLs as an additional class of co-factors necessary for HIV-1 infection is important for enhancing the basic knowledge of the HIV-1 entry that can be exploited for developing novel antiviral therapeutic strategies. ^
Resumo:
The hypothesis addressed in this project was that novel variants of naturally occurring human glutathione S-transferase P1 (GSTP1) can be created by random mutagenesis of the GSTP1 active site to yield polypeptides with increased enzymatic activity against electrophilic substrates. Specifically, the mutant proteins would metabolize and inactivate selected electrophiles more efficiently than wild-type GSTP1 and confer significant cytoprotection, as measured by reduced apoptosis and increased clonogenic survival. Glutathione S-transferase P1, a major electrophile metabolizing and detoxifying enzyme, is encoded by a polymorphic genetic locus. This locus contains nucleotide transitions in the region encoding the active site of the peptide that yields proteins with significant structural and functional differences. The method of Degenerate Oligonucleotide Mediated Random Mutagenesis (DOMRM) was used to generate cDNAs encoding unique GSTP1 polypeptides with mutations within electrophile binding site (H-site) while leaving the glutathione binding site unaffected. A prokaryotic expression library of the mutant GSTP1 polypeptides was created and screened for increased resistance to cisplatin. This screen resulted in the isolation of 96 clones representing 22 distinct mutant cDNA sequences. To investigate the effects of the changes in the H-site on the biological activity of GSTP1, the cDNA of wild-type GSTP1c and two of the identified mutants were stably transfected into human LNCaP-Pro5 prostate cancer cells that do not endogenously express GSTP1. Wild-type transfectants were resistant to doxorubicin-induced apoptosis and displayed increased clonogenic survival compared to vector controls. However, contrary to the hypothesis, in both assays the mutant transfectants were no more resistant to doxorubicin than the wild-type transfectants. To elucidate the mechanisms underlying GSTP1-mediated survival, an in-vitro assay was developed to determine whether active GSTP1 protein directly metabolizes doxorubicin by conjugation to reduced glutathione (GSH). Although GSH did promote the appearance of a unique doxorubicin conjugate, conjugate formation was not substantially increased by the addition of GSTP1 in a variety of reaction conditions. ^
Resumo:
Sox9 is a master transcription factor in chondrocyte differentiation. Several lines of evidence suggest that the p38 mitogen-activated protein kinase (MAPK) pathway is involved in chondrocyte differentiation. In the present study, we examined the roles of p38 in the regulation of SOX9 activity and chondrogenesis. ^ COS7 cells were transfected with a SOX9 expression vector and 4x48-p89, a luciferase construction harboring four tandem copies of a SOX9-dependent 48-bp enhancer in Col2a1. Coexpression of MKK6EE, a constitutively active mutant of MKK6, a MAPKK that specifically activates p38, further increased the activity of the SOX9-dependent 48-bp enhancer about 5-fold, and SOX9 protein levels were not increased under these conditions. This increase in enhancer activity was not observed in a mutant enhancer construct harboring mutations that abolish SOX9 binding. These data strongly suggested that activation of the p38 pathway results in increased activity of SOX9. In addition, the increase of the activity of the SOX9-dependent 48-bp enhancer by MKK6EE was also observed in primary chondrocytes, and this increase was abolished by coexpression of a p38 phosphatase, MKP5, and p38 specific inhibitors. Furthermore, treatment of primary chondrocytes with p38 inhibitors decreased the expression of Col2a1, a downstream target of Sox9, without affecting Sox9 RNA levels, further supporting the hypothesis that p38 plays a role in regulating Sox9 activity in chondrocytes. ^ To further study the role of the p38 MAPK pathway in chondrogenesis, we generated transgenic mice that express MKK6EE in chondrocytes under the control of the Col2a1 promoter/intron regulatory sequences. These mice showed a dwarf phenotype characterized by reduced chondrocyte proliferation and a delay in the formation of primary and secondary ossification centers. Histological analysis using in situ hybridization showed reduced expression of Indian hedgehog, PTH/PTHrP receptor, cyclin D1 and increased expression of p21. In addition, consistent with the notion that Sox9 activity was increased in these mice, transgenic mice that express MKK6EE in chondrocytes showed phenotypes similar to those of mice that overexpress SOX9 in chondrocytes. Therefore, our study provides in vivo evidence for the role of p38 in chondrocyte differentiation and suggests that Sox9 is a downstream target of the p38 MAPK pathway. ^