47 resultados para antisense RNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viral systems have contributed tremendously to the understanding of eukaryotic molecular biology. The proportional pattern of retroviral RNA expression offers many clues into the alternative splicing of cellular transcripts. The MuSVts110 virus presents an unusual expression system, where the mechanistic combination of RNA splicing and cellular transformation can be physiologically manipulated. Splicing of MuSVts110 pre-mRNA occurs inefficiently (30%-50%) at 33$\sp\circ$C or below and is subdued at 39$\sp\circ$C ($<$5%). Like most alternatively spliced cellular and retroviral transcripts, the MuSVts110 pre-mRNA contains cis-acting intron and exon sequences that attenuate splicing. These include a splicing inhibitory sequence at the 3$\prime$ end of the MuSVts110 v-mos exon, called the E2 Distal Element (E2DE), and a sub-optimal 3$\prime$ splice site. The E2DE directly inhibits MuSVts110 RNA splicing in a sequence-specific fashion at 39$\sp\circ$C but not at 28$\sp\circ$C, potentially through the association of cellular factors. Inefficient MuSVts110 splicing is pre-dominantly attributed to the utilization of multiple weak branchpoint sequences located between $-113$ and $-34$ nucleotides upstream of the 3$\prime$ splice site. The molecular control of MuSVts110 splicing, represented primarily by scattered multiple inefficient branchpoint sequences that are conditionally modulated by the E2DE at higher growth temperatures, is discussed. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One way developing embryos regulate the expression of their genes is by localizing mRNAs to specific subcellular regions. In the oocyte of the frog, Xenopus laevis, many RNAs are localized specifically to the animal or the vegetal halves of the oocyte. The localization of these RNAs contributes to the primary polarity of the oocyte, the asymmetry that is the basis for patterning and lineage specification in the embryo. I have screened a cDNA library for clones containing the Xlsirt repeat, an element known to target RNAs to the vegetal cortex of the oocyte. I have identified seventeen cDNA clones that contain this element. One of these cDNAs encodes the RNA binding protein Hermes. The Hermes mRNA is localized to the vegetal cortex of the oocyte. Additionally, Hermes protein is also vegetally localized in the oocyte and is found in subcellular structures known to contain localized mRNAs. This suggests that Hermes might interact with localized RNAs. While Hermes protein is present in oocytes, it disappears at germinal vesicle breakdown during maturation. We therefore believe that the time period during which Hermes functions is during oogenesis or maturation prior to the time of Hermes degradation. To determine Hermes function, an antisense depletion strategy was used that involved injecting morpholino oligos (HE-MO) into oocytes. Injection of these morpholinos causes the level of Hennes protein to drop prematurely during maturation. Embryos produced from these oocytes exhibit cleavage defects that are most prevalent in the vegetal blastomeres. The phenotype can be partially rescued by injection of a heterologous Hermes mRNA and is therefore specific to Hermes. The Hermes expression and depletion results are consistent with a model in which Hermes interacts with one or more vegetally localized mRNAs in the oocyte and during the early stages of maturation. The interaction is required for cleavage of the vegetal blastomeres. Therefore, it is likely that at least one mRNA that interacts with Hermes is a cell cycle regulator. ^