66 resultados para Tumors in aminals.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Naturally occurring genetic variants confer susceptibility to disease in the human population, including in testicular germ cell tumor development. Disease susceptibility loci for testicular germ cell tumors have been identified by genetic mapping in humans and mice. However, the identity of many of the susceptibility genes remains unclear. My study utilized a chromosome substitution strain, the 129.MOLF-Chr 19 (or M19 strain), to identify candidate testicular germ cell tumor susceptibility genes. Males of this strain have a high incidence of germ cell tumors in the testes. By forward genetic approaches, five susceptibility loci were fine-mapped and the genetic interactions were dissected. In addition, I identified three protein-coding genes and one micro-RNA as testicular tumor susceptibility genes by genomic screening. Using reverse genetic approaches, I verified one of the candidates, Splicing factor 1, as a modifier of testicular tumor. Deficiency of SF1 significantly reduces the incidence of testicular tumors in mice. This study highlights the advantage of the 129.MOLF-Chr 19 consomic strain in disease gene identification and validation. It also sets the stage to elucidate the molecular mechanisms of tumorigenesis in the testis. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gemcitabine is a potent nucleoside analogue against solid tumors however drug resistance rapidly emerges. Removal of gemcitabine incorporated in the DNA by repair mechanisms could potentially contribute to resistance in chemo-refractory solid tumors. In this study, we evaluated homologous recombination repair of gemcitabine-stalled replication forks as a potential mechanism contributing to resistance. We also studied the effect of hyperthermia on homologous recombination pathway to explain the previously reported synergy between gemcitabine and hyperthermia. We found that hyperthermia degrades and inhibits localization of Mre11 to gemcitabine-stalled replication forks. Furthermore, gemcitabine-treated cells that were also treated with hyperthermia demonstrate a prolonged passage through late S/ G2 phase of cell cycle in comparison to cells treated with gemcitabine alone. This coincides with inhibition of resolution of γH2AX foci. Our findings also demonstrate that thermal sensitization of human hepatocellular carcinoma cell lines to gemcitabine is mediated through an Mre11-dependent homologous recombination repair pathway. Combination of non-invasive radiofrequency field-induced hyperthermia and gemcitabine was superior to either therapy alone (p

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prostate cancer (PCa) is one of the leading malignancies affecting men in the Western world. Although tremendous effort has been made towards understanding PCa development and developing clinical treatments in the past decades, the exact mechanisms of PCa are still not clearly understood. Emerging evidence has postulated that a population of stem cell-like cells inside a tumor, termed ‘cancer stem cells (CSCs)’, may be the cells responsible for tumor initiation, progression, recurrence, metastasis and therapy resistance. Like CSC studies in other cancer types, it has been reported that PCa also contains CSCs. However, there remain several unresolved questions that need to be clarified. First, the relationship between prostate CSCs (PCSCs) and therapy resistance (chemo- and radio-) is not known. Herein, we have found that not all CSCs are drug-tolerant, and not all drug-tolerant cells are CSCs. Second, whether primary human PCa (HPCa) actually contain PCSCs remains unclear, due to the well-known fact that we have yet to establish a reliable assay system that can reproducibly and faithfully reconstitute tumor regeneration from single HPCa cells. Herein, after utilizing more than 114 HPCa samples we have provided evidence that immortalized bone marrow-derived stromal cells (Hs5) can help dissociated HPCa cells generate undifferentiated tumors in immunodeficient NOD/SCID-IL2Rγ-/- mice, and the undifferentiated PCa cells seem to have a survival advantage to generate tumors. Third, the evolution of PCa from androgen dependent to the lethally castration resistant (CRPC) stage remains enigmatic, and the cells responsible for CRPC development have not been identified. Herein, we have found a putative cell population, ALDH+CD44+α2β1+ PCa cells that may represent a cell-of-origin for CRPC. Taken together, our work has improved our understanding of PCSC properties, possibly highlighting a potential therapeutic target for CRPC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2-Chloro-9-(2-deoxy-2-fluoro-$\beta $-D-arabinofuranosyl)adenine(Cl-F-ara-A) is a new deoxyadenosine analogue which is resistant to phosphorolytic cleavage and deamination, and exhibits therapeutic activity for both leukemia and solid tumors in experimental systems. To characterize its mechanism of cytotoxicity, the present study investigated the cellular pharmacology and the biochemical and molecular mechanisms of action of Cl-F-ara-A, from entrance of the drug into the cell, chemical changes to active metabolites, targeting on different cellular enzymes, to final programmed cell death response to the drug treatment.^ Cl-F-ara-A exhibited potent inhibitory action on DNA synthesis in a concentration-dependent and irreversible manner. The mono-, di-, and triphosphates of Cl-F-ara-A accumulated in cells, and their elimination was non-linear with a prolonged terminal phase, which resulted in prolonged dNTP depression. Ribonucleotide reductase activity was inversely correlated with the cellular Cl-F-ara-ATP level, and the inhibition of the reductase was saturated at higher cellular Cl-F-ara-ATP concentrations. The sustained inhibition of ribonucleotide reductase and the consequent depletion of deoxynucleotide triphosphate pools result in a cellular Cl-F-ara-ATP to dATP ratio which favors analogue incorporation into DNA.^ Incubation of CCRF-CEM cells with Cl-F-ara-A resulted in the incorporation of Cl-F-ara-AMP into DNA. A much lesser amount was associated with RNA, suggesting that Cl-F-ara-A is a more DNA-directed compound. The site of Cl-F-ara-AMP in DNA was related to the ratio of the cellular concentrations of the analogue triphosphate and the natural substrate dATP. Clonogenicity assays showed a strong inverse correlation between cell survival and Cl-F-ara-AMP incorporation into DNA, suggesting that the incorporation of Cl-F-ara-A monophosphate into DNA is critical for the cytotoxicity of Cl-F-ara-A.^ Cl-F-ara-ATP competed with dATP for incorporation into the A-site of the extending DNA strand catalyzed by both DNA polymerase $\alpha$ and $\varepsilon$. The incorporation of Cl-F-ara-AMP into DNA resulted in termination of DNA strand elongation, with the most pronounced effect being observed at Cl-F-ara-ATP:dATP ratio $>$1. The presence of Cl-F-ara-AMP at the 3$\sp\prime$-terminus of DNA also resulted in an increased incidence of nucleotide misincorporation in the following nucleotide position. The DNA termination and the nucleotide misincorporation induced by the incorporation of Cl-F-ara-AMP into DNA may contribute to the cytotoxicity of Cl-F-ara-A. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The c-myc oncogene has the unusual ability to induce proliferation and apoptosis. Transgenic mice have been generated in which the expression of Myc is under the control of an epithelial-specific keratin 5 (K5) promoter. These mice have increased levels of proliferation and p53-dependent apoptosis, and are predisposed to developing spontaneous tumors in epithelial tissues. In this study, various knockout mice were bred to K5 Myc transgenic mice to identify factors involved in the aberrant apoptosis, hyperproliferation, and spontaneous tumorigenesis present in these mice. Consistent with in vitro studies, Myc-induced, p53-dependent apoptosis in transgenic epidermis was found to be partially dependent on p19ARF, a p53 regulator that inhibits mdm2. Additionally, the rate of tumorigenesis was increased when p19ARF was absent in Myc transgenic mice. Consistent with previous reports that some E2F family members may function as tumor suppressors, inactivation of either E2f1 or E2f2 was found to accelerate tumor development in the K5 Myc transgenic mice. Acceleration of tumorigenesis in the absence of E2F1 occurred despite the fact that apoptotic levels were increased in transgenic tissue and tumors null for E2f1 , whereas hyperproliferation was unaffected. In contrast, inactivation of E2f2 was found to increase hyperproliferation in the K5 Myc transgenic mice, while having no effect on apoptosis. The lack of E2f1 in the Myc transgenic mice increased the expression of several p53 transcription target genes, which may explain the increased apoptosis in these mice. In transgenic epidermis, p53 is phosphorylated at serine 18, a site of phosphorylation by ATM. Inactivation of ATM in K5 Myc transgenic mice impaired Myc-induced apoptosis, identifying ATM as having an important role in Myc-induced apoptosis. Moreover, the absence of ATM accelerates tumorigenesis in K5-expressing tissues. However, p53 accumulation and phosphorylation at serine 18 induced by Myc occurs independent of ATM. Therefore, another activity of ATM appears to be important for Myc-induced apoptosis. These findings show that acceleration of tumorigenesis in K5 Myc transgenic mice, as in the case of p53, p19ARF, E2F1, E2F2, and ATM absence, does not necessarily correlate with suppression of Myc-induced apoptosis, as seen only when p53, p19ARF or ATM was absent. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

I have undertaken measurements of the genetic (or inherited) and nongenetic (or noninherited) components of the variability of metastasis formation and tumor diameter doubling time in more than 100 metastatic lines from each of three murine tumors (sarcoma SANH, sarcoma SA4020, and hepatocarcinoma HCA-I) syngeneic to C3Hf/Kam mice. These lines were isolated twice from lung metastases and analysed immediately thereafter to obtain the variance to spontaneous lung metastasis and tumor diameter doubling time. Additional studies utilized cells obtained from within 4 passages of isolation. Under the assumption that no genetic differences in metastasis formation or diameter doubling time existed among the cells of a given line, the variance within a line would estimate nongenetic variation. The variability derived from differences between lines would represent genetic origin. The estimates of the genetic contribution to the variation of metastasis and tumor diameter doubling time were significantly greater than zero, but only in the metastatic lines of tumor SANH was genetic variation the major source of metastatic variability (contributing 53% of the variability). In the tumor cell lines of SA4020 and HCA-I, however, the contribution of nongenetic factors predominated over genetic factors in the variability of the number of metastasis and tumor diameter doubling time. A number of other parameters examined, such as DNA content, karyotype, and selection and variance analysis with passage in vivo, indicated that genetic differences existed within the cell lines and that these differences were probably created by genetic instability. The mean metastatic propensity of the lines may have increased somewhat during their isolation and isotransplantation, but the variance was only slightly affected, if at all. Analysis of the DNA profiles of the metastatic lines of SA4020 and HCA-I revealed differences between these lines and their primary parent tumors, but not among the SANH lines and their parent tumor. Furthermore, there was a direct correlation between the extent of genetic influence on metastasis formation and the ability of the tumor cells to develop resistance to cisplatinum. Thus although nongenetic factors might predominate in contributing to metastasis formation, it is probably genetic variation and genetic instability that cause the progression of tumor cells to a more metastatic phenotype and leads to the emergence of drug resistance. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Von Hippel-Lindau (VHL) disease is an autosomal dominant disorder characterized by the development of retinal and central nervous system hemangioblastoma, renal cell carcinoma (RCC), pheochromocytoma and pancreatic islet cell tumors (PICT). The VHL gene maps to chromosome 3p25 and has been shown to be mutated in 57% of sporadic cases of RCC, implicating VHL in the genesis of RCC. We report a multigeneration VHL kindred in which four affected female siblings developed PICT at early ages. Analysis of the three coding exons of the VHL gene in this family revealed a single, missense mutation in codon 238. Inheritance of the 238 mutation has been reported to correlate with a 62% risk of pheochromocytoma development. In this kindred, all affected individuals carried the mutation as well as one additional sibling who showed no evidence of disease. Clinical screening of this individual indicated small ($<$1 cm) pancreatic and kidney tumors. Results suggest that inheritance of the codon 238 mutation does not correlate with early onset pheochromocytoma. Rather, the only individual in the pedigree with pheochromocytoma was the proband's mother who developed bilateral pheochromocytoma at the age of 62. Thus, the VHL codon 238 mutation may predispose to late onset pheochromocytoma in this family; however, it does not explain the preponderance of PICT in the third generation since this mutation has not been reported to increase the risk of developing pancreatic lesions. This suggests that inheritance of the codon 238 mutation and subsequent somatic inactivation of the wild type allele of the VHL gene may not be sufficient to explain the initiation and subsequent progression to malignancy in VHL-associated neoplasms. Since the two tumor types that most frequently progress to malignancy are RCC and PICT, we asked whether loss of heterozygosity (LOH) could be detected proximal to the VHL gene on chromosome 3 in distinct regions of 3p previously implicated by LOH and cytogenetic studies to contain tumor suppressor loci for RCC. LOH was performed on high molecular weight DNA isolated from peripheral blood and frozen tumor tissue of family members using microsatellite markers spanning 3p. Results indicated LOH for all informative 3p loci in tumor tissue from affected individuals with PICT. LOH was detected along the entire length of the chromosome arm and included the proximal region of 3p13-14.2 implicated in the hereditary form of renal cell carcinoma.^ If 3p LOH were a critical event in pancreatic islet cell tumorigenesis, then it should be expected that LOH in sporadic islet cell tumors would also be observed. We expanded LOH studies to include sporadic cases of PICT. Consistent LOH was observed on 3p with a highest frequency LOH in the region 3p21.2. This is the first evidence for an association between chromosome 3 loci and pancreatic islet cell tumorigenesis. (Abstract shortened by UMI.) ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The hydroxylation of N- and O-methyl drugs and a polycyclic hydrocarbon has been demonstrated in microsomes prepared from two transplantable Morris hepatomas (i.e., 7288C. t.c. and 5123 t.c.(H). The hydroxylation rates of the drug benzphetamine and the polycyclic hydrocarbon benzo {(alpha)} pyrene by tumor microsomes were inducible 2 to 3-fold and 2-fold, respectively by pretreatment of rats with phenobarbital/hydrocortisone. Hepatoma 5123t.c.(h) microsomal hydroxylation activities were more inducible after these pretreatments than hepatoma 7288C.t.c. Two chemotherapeutic drugs (cyclophosphamide and isophosphamide) were shown to be mutagenic after activation by the tumor hemogenate with the TA100 strain of Salmonella typhimurium bacteria. NADPH-cytochrome P-450 was purified from phenobarbital/hydrocortisone treated rat hepatoma 5123t.c.(H) microsomes 353-fold with a specific activity 63.6 nmol of cytochrome c reduced per min per mg of protein. The purified enzyme, has an apparent molecular weight of 79,500 daltons, and contained an equal molar ratio of FMN and FAD, with a total flavin content of 16.4 nmol per mg of protein. The purified enzyme also catalyzed electron transfer to artificial electron acceptors with the K(,m) values of the hepatoma reductase similar to those of purified liver reductase. The K(,m) value of the hepatoma reductase (13 uM) for NADPH was similar to that of purified liver reductase (5.0 uM). In addition the purified hepatoma reductase was immunochemically similar to the liver reductase.^ Hepatoma cytochrome P-450, the hemeprotein component of the hepatoma microsomes of rats pretreated with phenobarbital/hydrocortisone. The resolution of the six forms was achieved by the DE-53 ion-exchange chromatography, and further purified by hydroxyapatite. The six different fractions that contained P-450 activity, had specific contents from 0.47 to 1.75 nmol of cytochrome P-450 per mg of protein, and indicated a 2 to 9-fold purification as compared to the original microsomes. In addition, difference spectra, molecular weights and immunological results suggest there are at least six different forms of cytochrome P-450 in hepatoma 5123 t.c.(H). ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mutations disabling the retinoblastoma (Rb) pathway are among the most common in human cancers, including brain cancer. These mutations promote tumor development through deregulated control of the E2F family of transcription factors. E2F1 belongs to a class of E2F's identified as transcriptional activators and involved in the G1/S phase transition of the cell. However, E2F-1 presents with a paradox as it is considered to have membership in two gene classes, functioning as both an oncogene and a tumor suppressor. This unusual trait generates a degree of uncertainty on the role that E2F1 plays in the development or maintenance of any given tumor. Here we show that E2F1 functions as an oncogene in brain tumors through the generation of mice engineered to overexpress E2F1 specifically within glial cells and neuronal progenitors as directed by the GFAP promoter. Mice carrying the transgene develop with high penetrance a phenotype characterized by neurological deficits including paresia, ataxia, head tilt and seizures. MRI imagining of the tgE2F1 mice reveals a low incidence of mild hydrocephalus, and most notably, histological analysis demonstrates that 25% of tgE2F1 mice present with the spontaneous formation of malignant brain tumors. Overall these neoplasms show histological features from a wide range of aggressive brain cancers including medulloblastoma, choroid plexus carcinoma, primary neuroectodermic tumor and malignant gliomas. Isolation and characterization of astrocytes from the tgE2F1 animal reveals a highly proliferative population of cells with 55% ± 2.5 of the tgE2F1astrocytes, 35% ± 3.4 normal mouse astrocytes in S-phase and the acquired capacity to grow in anchorage independent conditions. Additionally tgE2F1 astrocytes show an aberrant phenotype with random chromosomal fusions and nearly all cells demonstrating polyploidy. Taken together, this model forces a comparison to human brain tumor formation. Mouse age as related to tumoral mimics the human scenario with juvenile tgE2F1 mice presenting embryonal tumors typically identified in children, and older tgE2F1 mice demonstrating gliomas. In this regard, this study suggests a global role for E2F1 in the formation and maintenance of multilineage brain tumors, irrefutably establishing E2F1 as an oncogene in the brain. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interactions between neoplastic cells and the host stroma play a role in both tumor cell migration and proliferation. Stromal cells provide structural support for malignant cells, modulate the tumor microenvironment, and influence phenotypic behavior as well as the aggressiveness of the malignancy. In response, the tumor provides growth factors, cytokines, and cellular signals that continually initiate new stromal reactions and recruit new cells into the microenvironment to further support tumor growth. Since growing tumors recruit local cells, as well as supplemental cells from the circulation, such as fibroblasts and endothelial precursors, the question arises if it would be possible to access circulating stromal cells to modify the tumor microenvironment for therapeutic benefits. One such cell type, mesenchymal stem cells (MSC), could theoretically be engrafted into stroma. MSC are pluripotent cells that have been shown to form stromal elements such as myofibroblasts, perivascular tissues and connective tissues. Several reports have demonstrated that MSC can incorporate into sites of wound healing and tissue repair, due to active tissue remodeling and local paracrine factors, and given the similarity between wound healing and the carcinoma induced stromal response one can hypothesize that MSC have the potential to be recruited to sites of tumor development. In addition, gene-modified MSC could be used as cellular vehicles to deliver gene products into tumors. My results indicate that MSC home to and participate in tumor stroma formation in ovarian tumor xenografts in mice. Additionally, once homed to tumor beds, MSC proliferate rapidly and integrate. My studies aim at understanding the fate of MSC in the tumor microenvironment, as well as utilizing them for cellular delivery of therapeutic genes into the stroma of ovarian carcinomas. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Because the goal of radiation therapy is to deliver a lethal dose to the tumor, accurate information on the location of the tumor needs to be known. Margins are placed around the tumor to account for variations in the daily position of the tumor. If tumor motion and patient setup uncertainties can be reduced, margins that account for such uncertainties in tumor location in can be reduced allowing dose escalation, which in turn could potentially improve survival rates. ^ In the first part of this study, we monitor the location of fiducials implanted in the periphery of lung tumors to determine the extent of non-gated and gated fiducial motion, and to quantify patient setup uncertainties. In the second part we determine where the tumor is when different methods of image-guided patient setup and respiratory gating are employed. In the final part we develop, validate, and implement a technique in which patient setup uncertainties are reduced by aligning patients based upon fiducial locations in projection images. ^ Results from the first part indicate that respiratory gating reduces fiducial motion relative to motion during normal respiration and setup uncertainties when the patients were aligned each day using externally placed skin marks are large. The results from the second part indicate that current margins that account for setup uncertainty and tumor motion result in less than 2% of the tumor outside of the planning target volume (PTV) when the patient is aligned using skin marks. In addition, we found that if respiratory gating is going to be used, it is most effective if used in conjunction with image-guided patient setup. From the third part, we successfully developed, validated, and implemented on a patient a technique for aligning a moving target prior to treatment to reduce the uncertainties in tumor location. ^ In conclusion, setup uncertainties and tumor motion are a significant problem when treating tumors located within the thoracic region. Image-guided patient setup in conjunction with treatment delivery using respiratory gating reduces these uncertainties in tumor locations. In doing so, margins around the tumor used to generate the PTV can be reduced, which may allow for dose escalation to the tumor. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Both angiogenesis and vasculogenesis contribute to the formation and expansion of tumor neovasculature. We demonstrated that bone marrow (BM)-derived cells migrated to TC71 Ewing's tumors and differentiated into endothelial cells lining perfused, functional tumor neovessels. In addition, a substantial fraction of recruited, BM-derived cells resided in the vessel vicinity but did not demonstrate endothelial differentiation. Rather, these perivascular cells expressed desmin and PDGFR-β, implying pericyte-like/vascular smooth muscle cell differentiation. No defined, consensus set of markers exists for endothelial progenitor cells (EPCs) and the specific subsets of BM cells that participate in vessel formation are poorly understood. We used a functional in vivo assay to investigate the roles performed by specific human- and murine-derived stem/progenitor subpopulations within Ewing's sarcoma tumors. CD34 +45+, CD34+38-, VEGFR2 + and Sca1+Gr1+ cells were demonstrated to establish residence within the expanding tumor vascular network and differentiate into endothelial cells and pericytes. By constrast, CD34-45 + and Sca1-Gr1+ cells predominantly localized to sites outside the Ewing's tumor vasculature, and differentiated into macrophages. Cytokines, such as VEGF, influence the recruitment of BM cells and their incorporation into the tumor vasculature. VEGF165-inhibited TC/siVEGF7-1 Ewing's tumors showed delayed in vivo tumor growth, decreased vessel density, and reduced infiltration of BM progenitor cells. We tested whether another chemoattractant, Stromal Cell-Derived Factor-1 (SDF-1), could augment the growth of these VEGF165-inhibited TC/siVEGF 7-1 tumors by enhancing the recruitment of BM cells and stimulating neovasculature expansion. SDF-1 promoted progenitor cell chemotaxis and retainment of BM-derived pericyte precursors in close association with functional, perfused tumor blood vessels. Treatment of TC/siVEGF7-1 tumors with adenovirus-SDF-1α resulted in augmented tumor size, enhanced pericyte coverage of tumor neovessels, remodeling of vascular endothelium into larger, functional structures, and upregulation of PDGF-BB, with no effect on VEGF165. Taken together, these findings suggest that the recruitment of BM stem/progenitor cells plays an important role in the growth of Ewing's tumors. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gastrointestinal stromal tumors (GIST) represent 80% of sarcoma arising from the GI tract. The inciting event in tumor progression is mutation of the kit or, rarely, platelet derived growth factor receptor-α (PDGFR) gene. These mutations encode ligand independent, constitutively active proteins: Kit or PDGFR. ^ These tumors are notoriously chemo and radio resistant. Historically, patients with advanced disease realized a median overall survival of 9 months. However, with modern management of GIST with imatinib mesylate (Novartis), a small molecule inhibitor of the Kit, PDGFR, and Abl tyrosine kinases, patients now realize a median overall survival greater than 30 months. However, almost half of patients present with surgically resectable GIST and the utility of imatinib in this context has not been prospectively studied. Also, therapeutic benefit of imatinib is variable from patient to patient and alternative targeted therapy is emerging as potential alternatives to imatinib. Thus, elucidating prognostic factors for patients with GIST in the imatinib-era is crucial to providing optimal care to each particular patient. Moreover, the exact mechanism of action of imatinib in GIST is not fully understood. Therefore, physicians find difficulty in accurately predicting which patient will benefit from imatinib, how to assess response to therapy, and the time at which to assess response. ^ I have hypothesized that imatinib is tolerable and clinically beneficial in the context of surgery, VEGF expression and kit non-exon 11 genotypes portend poor survival on imatinib therapy, and imatinib's mechanism of action is in part due to anti-vascular effects and inhibition of the Kit/SCF signaling axis of tumor-associated endothelial cells. ^ Results herein demonstrate that imatinib is safe and increases the duration of disease-free survival when combined with surgery. Radiographic and molecular (namely, apoptosis) changes occur within 3 days of imatinib initiation. I illustrate that non-exon 11 mutant genotypes and VEGF are poor prognostic factors for patients treated with imatinib. These findings may allow for patient stratification to emerging therapies rather than imatinib. I show that imatinib has anti-vascular effects via inducing tumor endothelial cell apoptosis perhaps by abrogation of the Kit/SCF signaling axis. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Primary cutaneous melanoma is a cancer arising from melanocytes in the skin. In recent decades the incidence of this malignancy has increased significantly. Mortality rates are high for patients with tumors measuring over a few millimeters in thickness. Response rates to conventional radiation and chemotherapy are very low in patients with metastatic melanoma. New therapies targeting melanoma’s aberrant cell signaling pathways such as the MAP Kinase pathway are being developed. Mutations of NRAS and BRAF genes are quite common in cutaneous melanoma and lead to constitutive activation of the MAP Kinase pathway. This study tests the hypothesis that NRAS and BRAF mutations increase as a tumor progresses from the noninvasive radial growth phase (RGP) to the invasive vertical growth phase (VGP). Laser capture microdissection was used to obtain separate, pure tumor DNA samples from the RGP and VGP of thirty primary cutaneous melanomas. PCR was used to amplify NRAS exon 2 and BRAF exon 15 tumor DNA. The amplified DNA was sequenced and analyzed for mutations. An overall mutation rate of 74% was obtained for the twenty-three melanomas in which there were complete sequence results. With the exception of one melanoma NRAS and BRAF mutations were mutually exclusive. All seven NRAS exon 2 mutations involved codon 61. Three of these melanomas had mutations in both the RGP and VGP. The remaining four tumors were wild type for NRAS exon 2 in the RGP but mutated in the VGP. Of the fifteen BRAF exon 15 mutated melanomas all but one involved codon 600. Twelve of the fifteen BRAF exon 15 mutations were the T1799A type. Nine of the fifteen BRAF mutated tumors had the same mutation in both the RGP and VGP. Five of fifteen melanomas had wild type RGP DNA and BRAF exon 15 mutated VGP DNA. A single melanoma had BRAF exon 15 mutated DNA in the RGP and wild type DNA in the VGP. Overall, these results suggest a trend toward the acquisition of NRAS and BRAF mutations as cutaneous melanomas change from a noninvasive to an invasive, potentially deadly cancer.^